
PL360

(REVISED)

(})

A PROGRAMMING LANGUAGE FOR THE IBM 360

BY

MICHAEL A. MALCOLM

STAN-CS-71-215
MAY, 1971

Reproduced b y

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield , Va. 2215 ,

DISTRI!Hirtbr·J STA TEMf&r=-A-

Approved for FUblic 1 -Dis re ease•
tribution Unlimited ,

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

•
Unclas s i f i ed '

St'l' Un t , . Cia s.sa fa r at a on . .

DOCUMENT CONTROL OAT A - R & D
rSt· cutlty das~ tf • ret1on o f title, t:'ldy o f llb~trart llltd inde•mt: 1tnnot1tt iun mu •.r bf' enrerf'd wltcn tit~ O llf'!tall tf'pott Is r /a ss 1 fi f'dl

1 O~ tGI ..., A TI ""G A C T t \' t TY (CO ti ·Ot•te author) 1.a . REPOR T SEC U ~ I l V CL.AS S IF" I C A T t ON

Unclassif i ed
Stanford University

2b . GRO U P

. R EP ORT T' I T L E

PL360 (REVISED), A PROGRAJ.t.iiNG LANGUAGE FOR THE IBM 360

. D ESC q i PT IVF. NOTES (T)rpe of rep ort and i ncluSIVe dates)

Technical Report 1Mav 1911 . •u THOr.t t S) (First name, middle initial, l a st name)

Mi chael A. Malcolm

• REPORT O A T E 7 e , TOTAL NO OF PAGES r· NO
OF REFS

May, 1971 91 15
•• C O NTJ:IACl OR GRANT NO . I a . O .. IGINATOR'S REPORT NUM8ERIS »

ONR N000~67-A-Oll2-0029
b . P F<O J EC T N O . I NSF GJ-408

STAN-CS - 71-215 AEC AT(04 - 3) 326PA30
c . eb . OTHER REPORT NOIS) (Any other n um be ra that m ay be a ~>s iQnf'd

thla report)

None
d .

1 0 D IS TR I B U TION STATEME~T

Releasable without limitations on dissemi nation .

1 1 SU PPL E M E NTAfiiV NOTES 12 . SPONSORING MIL ' T A F-f 'V ACT I VIT Y

Mathematics Program
Office of Naval Re s earch
Arlington, Virg in i a 22217

13 ABS T RACT

In 1968, N. Wirth (Jan . JACM) published a formal description of PL360, a pro-
gramming l anguage designed specifically for t he IBM 360 . PL360 has an appearance
similar to that of Algol , 'uut it provides the fac ilities of a symbolic machi n
language . Since 1968, m.unerous extensions and modifications have been made to t h _
PL360 compiler which was original ly designed and impl ement ed by N. Wirth and
J . Wells . Interface and input - output subroutines have been written which allow
the us e of PL360 under OS, IJOO , MTS and Orvyl .

A formal de~~ription of PL360 as it is presently implemented. is given . The
description of che language is followed by s ections on the US € of PL360 un er
various operating systems , namely OS, DOS and Ml'S . Instructions on hmv to us e
t he P1360 compiler and PL360 programs in an i nt eractive mode under the Orvyl t i me-
sharing monitor are also included.

...

(P AGE 1) Unclass i f i ed
5 /N 0101-807 - 6801 Secu ritv Classifica:ion

■ mi IWJ,^ iii|]i.iiJj»j.iiiiinii|.i.mii-.iCTu. IIJ. .m. 1" ■« >■»'■ WPimWWpipw<pW|lilBPI .mi IIUMH.IWL, ILIUB 1
Unclassified

Security Cl«»«ifiMttOB

KCV Monot
«out MOLK

Compilers
Computer Languages
IBM 560 Language Processors
Iteractive Language Processors

DD /STMUTS <BAa»
(PAGE 2)

Unclassified
Steurity CUtalfleatlon

 matim ^_^_i_mMmaiM£j

r
ppppnppvfcnv« w*r*i*,y*>-"i"i»m n

EL360

(REVISED)

A PROGRAMMING LANGUAGE FOR THE IBM 560

Michael A. Malcolm
I

i

This work has been supported in part by the National Science Foundation
(Grant GJ Uo8), the Atomic Energy Commission AT(0U-3) 526, PA # 30,
the Office of Naval Research NOOO1U-67-A-0112-0O29 (NR 0^-211), the
Ccranittee to Elect Stuart McLean to Congress, Lissner Computer Services
(San Jose), and the Santa Clara Valley Democratic Coalition.

mm mm

Abstract

In 1968, N. Wirth (Jan. JACM) published a formal description of PL560,

a programming language designed specifically for the IBM 360. PL560 has

an appearance similar to that of Algol, but it provides the facilities of

a symbolic machine language. Since I968, numerous extensions and

modifications have been made to the PL360 ccmpiler which was originally-

designed and implemented by N. Wirth and J. Wells. Interface and input-

output subroutines have been written which allow the use of EL560 under

OS, DOS, MTS and Orvyl.
A formal description of PL360 as it is presently implemented is

given. The description of the language is followed by sections on the

use of PLJÖO under various operating systems, namely OS, DOS and MTS.
Instructions on how to use the EL360 compiler and PL360 programs in an

interactive mode under the Orvyl time-sharing monitor are also included.

Keywords: C ompilers
Computer Languages

IBM 360 Language Processors
Interactive Language Processors

-*-«^^M*^M
MMMMta

^ma^^m mm W^^K^^^^nmm P» P 1IUIIBII IPI. Bg^WW

Ü

11
n

i jj

1!
IJ
h

ii

i
i
I
1

Table of Contents

1. Introduction, Historical Background and Aims 1

2. Definition of the Language 3

1. Terminology, Notation, and Basic Definitions 3

1. The Processor 3

d. Relationships h

3« The Program h

h. Syntax , 5

5. Syntactic Entities 6

6. Basic Symbols 7

2. Data Manipulation Facilities 8

1. Identifiers 8

2. Values 9

5. Register Declarations 10

k. Cell Declarations 11

5. Cell Designators 12

6. Register Assignments 13

7* Cell Assignments 16

8. Function Declarations 17

9. Function Statements 19

10. Synonym Declarations 19

11. Segment Base Declarations 21

3. Control Facilities 22

1. If Statements 22

2. Case Statements 2k

5. While Statements 25

k. For Statements 25

5. Blocks 26

6. Goto Statements 27

7. Procedure Declarations 27

8. Procedure Statements 29

3. Examples 30

11

■ -

. .. m ..-., --,... ^. ...■..-.. .:..- ^ ^. , gj

, ^,..,,, ^mrrm~*m<mmmmmmm*i*amwwi<mm*m*mmmm*mmm*msmmmm^*^^^'^^^ itrnm

f
I 10. Use as a DOS Language Processor go

1. System Configuration Requirements 69

1 2. Processing Options 70
5« JCL Statements YO

I h. DTF Tables 72

5« Library 75

f 11. Use as an MTS Language Processor 76

1. Data Set Requirements 76

I 2. Processing Options 77

3« MTS Library 77

I k, MIS Commands 77

12. Use as an ORVYL Language Processor 78

(1. Using the PL360 Compiler with ORVYL 78

2. Input-Output Subroutines for Interactive PL360 Programs . . 80

I 13» The Run-Time Library 82

II. Number Conversion Procedures 82

2. Data Manipulation Procedures 8^

Ik, Format of PL360 Programs 86 1
I
I
I.
i
I
I
I
I

1. Indentation 86

2. Spacing 87

3. Choice of Identifiers 88

k. Comments 88

5. Miscellaneous 89

15. Acknovrledgments 90

16. Feferences 91

iv

.1.. i...,i . —PWWI—^^^WP

I
I
i

4. I

u

u
I j

ii

1. Introduction

EL360 is a programming language designed specifically for the IBM

System/360 computers. It provides the facilities of a symbolic machine

language but displays a structure similar to that of Algol. A formal

description of an earlier version of the language has been published by

Niklaus Wirth [1] who directed the development of the EL360 language and

its compiler at the Computer Science Department of Stanford University.

Although EL560 was originally designed for writing logically self-contained

programs, subsequent extensions permit communication with separately

compiled programs.

An efficient one pass "in core" compiler, written by Niklaus Wirth,

Joseph W. Wells, Jr. and Edwin Satterthwaite, Jr., which incorporates these

extensions is available through the IBM Contributed Program Library [2].

This compiler runs under the OS operating system and translates EL560

source code into object modules in the format required by several 360

operating systems (OS and MTS for example). The documentation issued

with the compiler includes se-1 eral amendments to the original language

definition. Further extensions have recently been carried out at the

University of Newcastle by Jamas Eve. These changes [3,11] were aimed

primarily at relaxing the linkage constraints on separately compiled

programs, enabling for example direct communication with programs using

OS/360 type linkages. The present author has made several modifications

to the version of the compiler produced by James Eve. These extensions

have made it possible to run the compiler and compiled programs under DOS

operating systems. Assembly language subroutines have been written for

both OS and DOS to facilitate input-output with sequential tape and disk

files. With the aid of Dick Guertin of Stanford, the author has extended

the syntax of F1L360, primarily to increase programming convenience. We

have recently written assembly language interfaces to allow interactive

use of both the EL360 compiler and PL360 programs under the Orvyl time-

sharing monitor at Stanford. These recent extensions made at Stanford

have been documented in personal letters, memos or not at all.

The dispersed nature and inconvenient form of the FL360 documentation

is an undoubted hindrance to more extensive use of this powerful and

elegant tool. To remedy this, the language definition and compiler

m a im i>m »»vi.ußmitußm ■n.inim.jmiii^iiiBin m 9m

li
i:

description incorporating all changes are given in this manual. For a full

discussion of the background underlying the develppment of EL560 and a

description of the organization and development of the compiler together

with seme perceptive comments on the 360 Architecture, reference must still

be made to [1], where the aims of the language are summarized:
»

"... it was decided to develop a tool which would:

1. allow full use of the facilities provided by the 560 hardware,

2. provide convenience in writing and correcting programs, and

5. encourage the user to write in a clear and comprehensible

style. |

As a consequence of 3, it was felt that programs should not be able to

modify themselves. The language should have the facilities necessary to

express compiler and supervisor programs, and the programmer should be

able to determine every detailed machine operation."

Knowledge of the 560 architecture [h, 5 or 6] is a prerequisite

for understanding the language definition and some familiarity with the

360 Assembly Language [7] and Linkage Editor [8] is assumed in the des-

cription of the object code produced by the compiler.

In writing this manual, the author has drawn heavily upon the

(anonymous) PL360 Programming Manual published by the University of

Newcastle upon Tyne., Computing Laboratory [11].

r.

1
• ■

!.

i:
* ■

L

L

L

- - mum* ■ n ---■■•' ■■■■-^ —^ '
 — — tt^^A^****,*.-***

1

UM

D Definition of the Language

II

1!

li

U

I'

L

y

i]

i

2.1 Terminology, Notation, and Basic Definitions

The language is defined in terms of a computer which comprises a

number of processing units and a finite set of storage elements. Each of

the storage elements holds a content, also called value. At any given

time, certain significant relationships may hold between storage elements

and values. These relationships may be recognized and altered, and new

values may be created by the processing units. The actions taken by the

processors are detemined by a program. The set of possible programs form

the language. A program is composed of, and can therefore be decomposed

into elementary constructions according to the rules of a syntax, or grammar.

To each elementary construction corresponds an elementary action specified

as a semantic rule of the language. The action denoted by a program is

defined as the sequence of elementary actions corresponding to the elementary

constructions which are obtained when the program is decomposed (parsed)

by reading from left to right.

2.1.1 The Processor

At any time, the state of the processor is described by a sequence of

bits called the program status word (PSW). The status word contains, wnong

other information, a pointer to the next instruction to be executed, and a

quantity which is called the condition code.

Storage elements are classified into registers and core memory cells,

simply called cells. Registers are divided into three types according to

their size and the operations which can be perfoimed on their values. The

types of registers are.

a. integer or logical (a sequence of 32 bits),

b. real (a sequence of 32 bits),

c. long real (a sequence of 6h bits).

Cells are classified into five types according to their size and the type

of value which they may contain. A cell may be structured or simple. The

types of simple values and simple cells pre:

a. byte (a sequence of 8 bits = 1 byte),

b. short integer (a sequence of 16 bits = 2 bytes, interpreted as

an integer in two's complement binary notation),

5

at^mmmm

■ ■ ■ -■

«mvaw

2.1.2 Relationships

The most fundamental relationship is that which holds between a cell

and its value. It is known as containment; the cell is said to contain

the value.

Another relationship holds between the cells which are the components

of a structured cell, called an array, and the structured cell itself. It

is known as subordination. Structured cells are regarded as containing

the ordered set of the values of the component cells.

A set of relationships between values is defined by monadic and dyadic

functions or operations, which the processor is able to evaluate or perform.

The relationships are defined by mappings between values (or pairs of values)

known as the operands and values known as the results of the evaluation.

These mappings are not precisely defined in this report; instead, see [6].

2.1.3 The Program

A program contains declarations and statements. Declarations serve

to list the cells, registers, procedures, and other quantities which eure

involved in the algorithm described by the program, and to associate names,

so-called identifiers, with them. Statements specitV the operations to be

performed on these quantities, to which they refer through the use of

identifiers.

A program is a sequence of tokens, which are basic symbols, strings

or comments. Every token is itself a sequence of characters. The following

conventions are used:

0
11

c. integer or logical (a sequence of 32 bits = h bytes,

interpreted as an integer in two's complement binary notation),

d. real (a sequence of 32 bits = k bytes, to be interpreted as a

base-16 floating-point number),

e. long real (a sequence of 6^ bits = 8 bytes, to be interpreted as a

base-l6 floating-point number). If

The types integer and logical are treated as equivalent in the language,

and consequently only one of them, namely integer, will be mentioned

throughout the report.

E

n

il

L

0

11
I
I

MM

HURR

]

1]

I]

a. Basic symbols constitute the basic vocabulary of the languace

(cf. 2.1.6). They are either single characters, or underlined

letter sequences.

b. Strings are sequences of characters enclosed in quote marks (").

c. Comments are sequences of characters (not containing a semicolon)

preceded by the basic symbol coroment and followed by a semicolon (;)

It is understood that comments have no effect on the execution

of a program.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

(i

1;

L!

U

y

2.1.4 Syntax

A sequence of tokens constitutes an instance of a syntad ic entity

(or construct), if that entity can be derived from the sequence by one or

more applications of syntactic substitution rules. In each such application,

the sequence equal to the right side of the rule is replaced by the symbol

which is its left side.

Syntactic entitles (cf. 2.1.5) are denoted by English words enclosed in

the brackets (and) . These words describe approximately the nature of

the syntactic entity, and where these words are used elsewhere in the text,

they refer to that syntactic entity. For reasons of notatlonal convenience

and brevity, the script letters d) K > an(i T are also used in the

denotation of syntactic entities. They stand as abbreviations for any of

the following words (or pairs):

a t T

long real long real long real

real real real

integer integer integer

short integer short integer

byte

Syntactic rules are of the form <A> '.'.= % where (A) is a syntactic

entity (called the left side) and \ is a finite sequence of tokens and

syntactic entities (called the right side of the rule). The notation

<A) ::= ^ly — hn

iMMH

is used as an abbreviation for the n syntactic rules

(A) ::= P , (A) ::= |0 , ..., (A) : := | .

If in the denotations of constituents of the rule the script letters a t

X > 0? T occur more than once, they must be replaced consistently, or

possibly according to further rules given in the accompanying text. As an

exainple, the syntactic rule

(X register) ::= {^register identifier)

is an abbreviation for the set of rules

(long real register) ::= (long real register identifier)

(integer register) ::= (integer register identifier)

(real register) ::= (real register identifier)

2.1.5 Syntactic Entities

Syntactic Entity Section Syntactic Entity Section

(c7 cell assignment) 2.2.7 (for statement) 2.5.4
{Cl number) 2.2.2 (format code) 2.2.8
(alternative condition) 2.5.1 (fractional number) 2.2.2
(arithmetic operator) 2.2.6 (function declaration) 2.2.8
(block body) 2.3.5 (function definition) 2.2.8
(block head) 2.5.5 (function identifier) 2.2.1

(block) 2.5.5 (function statement) 2.2.9

(case clause) 2.5.2 (goto statement) 2.5.6

(case sequence) 2.5.2 (hexadecimal digit) 2.2.2

(case statement) 2.5.2 (hexadecimal value) 2.2.2

(character sequence) 2.2.2 (identifier) 2.2.1

(combined condition) 2.5.1 (if clause) 2.5.1

(compound condition) 2.5.1 (if statement) 2.5.1

(condition) 2.5.1 (increment) 2.5.4

(digit) 2.2.2 (index) 2.2.5

(declaration) 2.5.5 (instruction code) 2.2.8

(fill value) 2.2.4 (integer value identifier) 2.2.1

(for clause) 2.5.4 (integer value synonym
declaration) 2.2.10

0
0

If

I

0

L

li

[

mmmmm fimn»mfm-\i\m*mi'«

I
3
0
0
I!

n

u

u

y
y
ii
i

Syntactic Entity Section

(item) 2.2.U

iX primary) 2.2.6

(JC register assignment) 2.2.6

^C register synonym declaration) 2.2.10

(X register) 2.2.1

(label definition) 2.5-5

(letter) 2.2.1

(limit) 2.5.^

(logical operator) 2.2.6

(monadic operator) 2.2.6

(parameter) 2.2.9

(parameter list) 2.2.9

(procedure declaration) 2.3.7

(procedure heading) 2.5.7

(procedure identifier) 2.2.1

(procedure statement) 2.5-8

(program) 2.5.5

(relation) 2.5.1

(repetition list) 2.2.k

(scale factor) 2.2.2

(segment base declaration) 2.2.11

(segment base heading) 2.2.11

(segment close declaration) 2.2.11

Syntactic Entity Section

(separate procedure heading) 2.5.7

(shift operator) 2.2.6

(simple }(register assignment) 2.2.6

(simple procedure heading) 2.5.7

(simple statement) 2.5.5

(simple T type) 2,2.1+

(statement) 2.5.5

(string) 2.2.2

(synonymous cell) 2.2.10

(synonymous integer value) 2.2.10

(syn cell value) 2.2.10

(l cell declaration) 2.2.1+

(T cell designator) 2.2.5

(T cell identifier) 2.2.1

(j cell synonym declaration) 2.2.10

(T primary) 2.2.6

(T type) 2.2.H

(T value) 2.2.6

(true part) 2.5.1

(unsigned ^7 number) 2.2.2

(while clause) 2.5.5

(while statement) 2.5.5

2.1.6 Basic Symbols

A|B|c|D|E|F|G|H|l|j|K|L|M|N|o|pklRls|T|u|v|w|xly|z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|

0|1|2|5|M5|6|7|8|9|

+ H*I/I<H>HH>M;M(I)H#N"U
and I or | xor | abs | neg \ shll | shrl \ shla \ shra \

if |thenlelse|case|of|while|do|forlstep|until|

begin | end | goto | comment | null |

int eger \ real | logical | byt e \ charact er | long | short | array |

 — ■ ^M^Mg

•PWP^wwwp^pinfWi^^^pwpwww^^PW»^^ if y^mmmmpw III«IIUII ■iii.ii» i . .i<i.i.i|iq|

furic tion |procedure | register | syn | overflow \

segment | base | data | global | external | ccromon |dunimy | close |

equate

2.2 Data Manipulation Facilities

2.2.1 Identifiers

(letter) ::= A|B|C |D|E|F|G|H|l|j|K|L|M|N|o|p|Q|R|S|T|u|v|w|x|y|z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|Z|

(identifier) ::= (letter)] (identifier)(letter)| (identifier)(digit)

(^register) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

(integer value identifier) ::= (identifier)

An identifier is a ^f register, T cell-, procedure-, function-,

or integer value identifier, if it has respectively been associated with

a X register, T cell, procedure, function, or integer value (called

a quantity) in one of the blocks surrounding its occurrence. This

association is achieved by an appropriate declaration. The identifier

is said to designate the associated quantity. If the same identifier

is associated with more than one quantity, then the considered occurrence

designates the quantity to which it was associated in the innermost block

embracing the considered occurrence. In any one block, an identifier

must be associated with exactly one quantity. In the parse of a program,

that association determines which of the rules given above applies.

Any processing computer and operating system can be considered to

provide an environment in which the program is embedded, and in which some

identifiers are permanently declared. Some identifiers are assumed to be

known in every environment; they are called standard identifiers, and are

listed in the respective paragraphs on declarations.

11
0

I

I

0

0

I
I
I

mmmm

mmmmmmm mmmum

~1

I
I

H
D

U
U
y
E
i

2.2.2 Values

<diglt) ::= 0lll2|5|M5|6lT|8|9
(unsigned integer number) ::= {digit)|

(unsigned integer number)(digit)

(unsigned short integer number) ::= (unsigned integer number) S

(fractional nuit.ber) ::= (integer number) . (digit)|

(fractional number) (digit)

(scale factor) ::= (integer number)

(unsigned real number) ::= (fractional number)|

(unsigned integer number)R|(fractional number)1 (scale factor)|

(unsigned integer mynber)'(scale factor)

(unsigned long real number) ::= (fractional number)L|

(unsigned integer number)L| (fractional number)1 (scale factor)L|

(unsigned integer number)'(scale factor)L

(tf number) ::= (unsigned (7 number)|_(unsigned (7 number)

Integer, real, and long real numbers are represented in decimal notation.

The latter two can be followed by a scale factor denoting an integral power

of 10 . Short integers are distinguished from integers by the letter S

following the number. In order to denote a negative number, an unsigned
*/ number is preceded by the symbol "_" .-'

(hexadecimal digit) ::= (digit)|A|B|c|D|E|F

(hexadecimal value) ::= #(hexadecimal digit))

(hexadecimal value)(hexadecimal digit)

A hexadecimal value denotes a sequence of bits. Each hexadecimal digit

stands for a sequence of four bits defined as follows:

0 = 0000 1+ = 0100 8 = 1000 C = 1100

1 = 0001 5 = 0101 9 = 1001 D = 1101

2 = 0010 6 = 0110 A = 1010 E = 1110

5 = 0011 7 = Olli B = 1011 F = 1111

(string) ::= "(character sequence)"

(character sequence) ::= (character)|(character sequence)(character)

-'Note that the underline is used here. The minus sign (-) is used
only as a dyadic operator — never as part of a number.

- —

A string is a sequence of characters enclosed in quote marks. The set of

characters depends on the implementation (cf. 6 .1.1). If a. quote mark (")

is to be an element of the sequence, it is represented by a pair of

consecutive quote marks.

Examples: "Are"
"A""Z"

denotes the sequence ABC

denotes the sequence A"Z

"""A""" denotes the sequence "A"
(byte value) : : = "(character)" I (hexadecimal value) X

(short integer value) : : = (short integer number) I (hexadecimal value) S

(integer value)::= (integer number)l(hexadecimal value)!

(integer value identifier)

(real value) : : = (real number) I (hexadec ima.l value) R

(long real value) : : = (long real number) I (hexadecimal value) L

Examples:

byte values

short integer values:

integer values:

real values:

long real values:

"B" II?"

lOS #FFOOS

0 flOtc

1.0 _3.146

3.141592653591

flFX

1 size

2.7'8 f46ooOOOlR

#4E00000000000001L

Note: I f hexadecimal values are used in conjunction vrith arithmetic

operato!'s in a program, they must be considered as the sequence of bits l'thich

constitutes the computer's representation of the number on which the operator

is applied. Hexadecimal values followed by the lett~r R or L may be used

to denote numbers in unnormalized floating-point representation [4,5, 6].

2 . 2 . 3 Register Declarations

The System/36o processor has 16 registers which contain integer

numbers and are said to be of type integer (or logical). They are designated

by the following standard register identifiers (cf. 2.2.1):

RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, RlO, Rll, Rl2, Rl3, Rl4, Rl5

The processor also has four registers which contain real numbers or long

real numbers. If those registers are used in conjunction with real numbers,

they are said to be of type real, and are designated by the standard register

10

. . ;

r. tgrnrsfWHil ■film*''« WMWIIWMIWWMI

1
fl
il

i J

identifiers

FO, F2, FU, F6 .

If they are used in conjunction with long real numbers, they are said to be

of type long real, and are designated by the standard register identifiers

F01, F25, FU5, F67 •

The above register identifiers are assumed to be predeclared, and no further

register declarations can be made in a program; however other identifiers

can be associated with these registers (cf. 2.2.10).

Ü

Ü

0

I:
I!
u
y
ii

2.2.14- Cell Declarations

(simple byte type) ::= byte|character

{simple short integer type) :: = short integer

(simple integer type) ::= integer [logical

(simple real type) ::= real

(simple long real type) ::= long real

(T type) ::= (simple T type)[array (integer value)(simple T type)

(l cell declaration) ::= (T type)(item)l(T cell declaration), (item)

(item) ::= (identifier)](identifier) = (fill value)

(fill value) ::= (T value)] (string)]

©(procedure identifier)]@©(procedure identifier)]

@(T cell designator)1@@(T cell identifier)]

(repetition list)<fill value))

(repetition list) ::= (] (integer value)(] (repetition list)(fill value),

A cell declaration introduces identifiers and associates them with cells of

a specified type. The scope of validity of these cell identifiers is the

block in whose heading the declaration occurs (cf. 2.5.5) • Moreover, a

declaration may specify the assignment of an initial value to the introduced

cell. This assignment is understood to have occurred before execution of

the program.

Cells may be initialized to numerical values, strings, relative or

absolute addresses. The number of bytes appropriate for the type of the

declared cell is taken for each (numerical) I value. Strings are never

expanded or truncated, each character of the string occupies one byte.

11

mtatmutuäimi^*
■- " ' ^ ■'"■ i

initialization starting with t he leftmost byte. A short integer or integer

type cell can be i nitialized to the relative address (i.e., base register

and displacement) correspo:~ding to a 1 cell identifier or to "t-he relative

(entry point) address corresponding to a procedure identifier by means of the

@ operator. The @ operator also permits the initialization of an integer

type cell with the relative address (i.e., index register, base register

and displacement) of a 1 cell df!signator. The @@ operator enables

integer type cells to be initialized with absolute addresses corresponding

to 1 cell identifiers or the entry point of procedure identifiers.

If a simple type is preceded by the symbol array and an integer

value, say n , then the declared cell is an array (ordered set) of n cells

of the specified simple type. An initial value list with m < n entries

specifies the initial values of the first m elements of the array. A list

may be specified as a list of sublists. Repetition of a sequence of elements

may be specified by making the sequence into a list and preceding it by an

integer value, say k , specif'ying the number of times the list is to be used.

If no integer value precedes a list, it is used once. Absolute addresses

may not occur in lists where k > 1 • Integer values n and k must be

positive.

Note. Boundary alignment is performed for a cell declaration (according

to the simple type) and not for each initializing value; because strings are

never expanded or truncated, care is needed in initializing with combinations

of strings and otner values.

Examples:

~ flag

short integer i, j , k = lOS, m = (5),baddr = @base

long real x, y, z = 27' 3L

array 3 integer size (36, 23, 37),paramlist = (@@a,@@b,@@errproc)

array 132 ~ blank = 132(" "),buff= 33 (" ",2("*")," ")

array fbsi ze logical area = fbsize(O)

Cell Des i gnat ors

(1 cell designator) ::= <1 ~ell identifier)!

(1 cell identif ier)({index))

12

I
I
I
1
I

ii
11
0
0
11
l!
u
ß
II
il
I
I

^tgyp/^^^^^^siwfttjiyj^ n
(index) ::= (integer value)|(integer register)]

(integer register) + (integer value)]

(integer register) - (integer value)]

(integer register) + (integer register)]

(integer register) + (integer register) + (integer value)]

(integer register) + (integer register) - (integer value)

Cells are denoted by cell designators. The designator for a particular

cell consists of the Identifier associated with that cell, optionally

followed by an index. When an index is used, the address of the

designated cell is taken as the address associated with the cell identifier

plus the value of the index.

Notes: Register RO must not be specified as an index constituent.

Depending upon the function with which the cell designator is used and the

declaration of the cell identifier, the index may have 0,1 or 2

integer register constituents. If the cell identifier has no base

register associated with it, then the first integer register (if any) in

the index is understood to be the base register. If the cell identifier

has a base register associated with it, and the context permits an index

register, then an integer register in the index is taken as an index

register. If the identifier hay no associated base register and the context

permits indexing, then two integer registers may appear in the index and

they are understood to be the base register and index register, respectively.

Examples:

age

size (8)

price (Rl)

line (R2 + 15)

Bl(l)

Bl4(R2)

MEM(R5 + R7 + 8)

buff (Rl + Rh - 2)

2.2.6 Register Assignments

(T primary) ::= (l value)](T cell designator)

^primary) ::= (^register)

A primary is either a value or the content of a designated cell or register.

15

 matm

(simple X register assignment) ::=

(^register) := (c7 primary)|

(reregister) := (monadic operator)^? primary)|

(integer register) := (string)j

(integer register) := @ (T cell designator)|

(integer register) := § (procedure identifier)

A simple register assignment is said to specify the register appearing

to the left of the assignment operator (:=) . To this register is assigned

the value designated by the construct to the right of the assignment symbol,

'hat designated value may be obtained through execution of a monadic

operation specified by a monadic operator.

(monadic operator) ::= abs|neg|neg abs

The monadic operations are those of taking the absolute value, of sign

inversion, and of sign inversion after taking the absolute value.

If a string is assigned to a register, that string raust consist of

not more than four characters. If it consists of fewer than four characters,
*/ null characters-' are appended at the left of the string. The bit

representation of characters is defined in l1*-,5>6] (EBCDIC).

The construction with the symbol @ is used to assign to the specified

register the address of the designated cell or the entry point address of

the procedure.

The legal combinations of types to be substituted respectively for

the letters X BAU- (7 in preceding and subsequent rules of this paragraph

are given in Table 1.

X & !

integer integer

I integer short integer

1 real real

long real real

long real long real

Table 1

__

-/ Null characters have the bit representation |OOX

1U

0
0

E
E

li

II

I
I
I
I
I

MMMi mmm urn

■iiwniit i i

D
n

Examples of simple register assignmenti..;

RO : = i

R2 = RIO

R6 : = age

FO = quant (Rl)

R2 : = "xyz"

FU5 . = neg F01

R15 ! = abs height

^C register assignment) ::= {simple X register assignment)|

(jf register assignment){arithmetic operator)(27 primary)]

{integer register assignment){logical operator){integer primary)]

{integer register assignment){shift operator){integer value)]

{integer register assignment){shift operator){integer register)

{arithmetic operator) ::=+1-|*|/|++| —|

{logical operator) ;;= and|or|xor

{shift operator) ;:= shll|shla|shrllshra

A register assignment is said to specify the same register which is specified

by the simple register assignment or the register assignment fron which it

is derived. To this register is assigned the value obtained by applying a

dyadic operator to the current value of that specified register and the value

of the primary following the operator. The operations are the arithmetic

operations of addition (+) , subtraction (-) , multiplication (*) , and

division (/) , the logical operations of conjunction (and), exclusive and

inclusive disjunction (xor, or), and those of shifting to the left and right,

as implemented in the System/560. The operators ++ and ~ denote logical

or unnormalized addition .and subtraction when applied to integer or

real/long real registers respectively. When an integer value is specified

following a shift operator, it must be nonnegative and less than 31 •

15

- 1 - - -

H0V*!SS9f* W"! S" ■ ^W

Examples of register assignments:

RO

Rl

RIO

R9

F2

FO

F45

= R3

- 10

= i + age - R3 + size(8)

= R8 and R7 shll 8 or R6

= 5.1^16

= quant(Rl) * price(Rl)

= F^5 + F01

Note: 1. The syntax implies that sequences of operators, including

assignment, are executed strictly in sequence from left to

right. Thus

Rl := R2 + Rl

is not equivalent to

Rl := Rl + R2

but rather to the two statements

Rl := R2; Rl := Rl + Rl .

This single aspect of PL560 provides many pitfalls for beginners,

2. Multiplication and division with integer operands can only be

specified with a multiplicand or dividend register Rn , where

n is odd. The register Rm with m = n-1 is then used to

hold the extension to the left of the product and dividend

respectively. In the case of division, register Rm will be

assigned the resulting remainder.

Examples: R5 := x * y + z

R2 is affected by the multiplication.

R5 := Bl/15

RU is affected by the division and contains the

remainder.

2.2.7 Cell Assignments

<(7 cell assignment) ::= id cell designator) := (JC register)

The value of the X register is assigned to the designated Cl cell.

The allowable combinations of cell, and register types tf and X are

indicated in Table 1.

16

n

i
B
I

I

\

I

I
l

i unim

^^mm

11
n
n

Examples of cell assignments; i := RO

price(Rl) := FO

x := F67

i

2.2.8 Function Declarations

(format code) :: = (integer value)

(instruction code) ::= (integer value'

(function definition) :: =

(identifier)((format code) , (instruction code))

(function declaration) ::= function (function definition)]

(function declaration) , (function definition)

1 j

Ü

0

There exist various data manipulation facilities in the 360 computer

which cannot be expressed by an assignment. To make these facilities

available in the language, the function statement is introduced (cf. 2.2.9),

which uses an identifier to designate an individual computer instruction.

The function declaration serves to associate this identifier, which thereby

becomes a function identifier, with the desired computer instruction code,

and to define the instruction fields which correspond from left to right to

the parameters given in function statements. The format code defines the

format of the instruction according to Table 2. The last two bytes of

the instruction code define the first two bytes of the instruction. The

following example defines the standard function identifiers, which apart

from TEST, SET and RESET, were chosen to be the symbolic machine codes used

in [6].

L

IJ
u
11
■ r

!

function BAIiR(l,#0500),
CLC(15,#D500),
CLI(M9500),
CVB(12,^F00),
CVD(12,#UE00),
ED(5,#I}E00),
EDMK(5,#DF00),
EX(2,#H00),
IC(2,#U500),
LA(2,#U100),
IH(12,#U800),
m(5,#9800),
13^(1, #1200),
MVCf'5,#D200),

MVl(lf,#9200),
MVN(5,^100),
MVZ(5,#D500),
NC(5,#DlK)0),
NX (»b #9^0),
0C(5,*D600),
0I(^,#9600),
PACK(10,#F200),
RESET (8, #9200),
SEr(8,#92FF),
SLDA(9,*8F00),
SLDL(9,#8D00),
SIW(6,#OUOO),
SRDA(9,#8E00)

17

SRDL(9;#8COO),
STC(12,#U200),
STH(12,#U000),
STM(5,#9000),
SVC(7,#0A0O),
TEST(8,#95Fr),
TM(1+,#9100),
TR(5,#DC00),
TRT(5,#DDC0),
TS(8,#9300),
UNPK(10,#F300),
XC(5,#D700),
XI (U, #9700),

immimimm MMAHMBMMiMMIHHili MilHMiMHalMII

uiiiimmniuuii w ^itiFin^^wmmimi

Format
Code

0

1

2

3

h

5

6

7

8

9

10

Table 2

Number of
Parameter
Fields

Instruction Fields

8 16 52 US

0

2

2

3

2

3

1

1

1

2

!♦

R I
R LC

I IR IRI C

n 2

12 2

j 15 5

! ik 2

15 1

lies 1 c 1
lies 1 c I LC J
iRl 1

lies |

I l e 1
IS 1 1 iC 1
Ulil c 1 LC 1
|R 1 ICS I
IRl c 1
1 iesl *c 1 DC J

Jß.

LC

Field Definition Codes:

R = ^C register

C = T cell identifier (or designator in the 20 bit field) address

I = Integer value (The value is used directly

S = String in the instruction field)

L = T value or string or function designator. (The address of

the value is used in the instruction field)

18

f]

II

1

!i

II

li

li
L
L

MIMMMa maim ttmamm ̂
J

R^^W

B
0

0
II

' ^S^'-'.^WI^Wn »*"^S^«' ■'^■■VT*-^V;.^.'--*-.»-:.''--u~v^-tf'ii?-,wj«".,v*:'*,.-v/--'\'

U

y

y

2.2.9 Function Statements

(parameter) ::= {T value)| (string)) ^C register)|(T cell)|

(function designator)

(parameter list) ::= (parameter)] (parameter list), (parameter)

(function statement) ::= (function identifier)]

(function identifier)((parameter list))

If a function designator is used as a parameter, the first function

identifier must correspond to an execute instruction. That is, the first

byte of the instruction code must have the value f^X . An example is

the predeclared identifier EX (cf. 2.2.8).

Examples:

SET (flag) STM(RO, R15, save)

RESEr(flag) MVIC'*", line)

j I LA.(R1, line) IC(RO, flags (Rl))

MVC(1, line, "hi") EX(R1, MVC(0, line, buffer))

Ü
2.2.10 Synonym Declarations

fl L) (T cell synonym declaration) :: =

(T type)(identifier)(synonymous cell)|

(T cell synonym declaration), (identifier)(synonymous cell)

(synonymous cell) ::= s^n (T cell designator)|syn(integer value)

^C register synonym declaration) :: =

(simple X type) register (identifier) s^n ^C register)]

(j(register synonym declaration) , (identifier) s^n (^ register)

Cell and register synonym declarations serve to associate synonymous

identifiers with previously (i.e., preceding in the text) declared cells

or registers. The types associated with the synonymous cell identifiers

need not necessarily agree.

If a synonymous cell is specified by an integer value, then that

integer value represents the displacement (and possibly the base register

and index register) part of the cell's machine address.

19

-•■■■• ■ ;....■- ■■■■■ -■ -'■■' ^■—.—j^-^.^-^—^..-. ^^^L-M

.■.inpii i^i. i II pii JIIJ i|pjl.HilJ.|P»l'iKM|....-.Tl.»U|i|.i.l-l»-l",l'.MiPlUli)l"|l.l|ll.llHliH»LH-l.".

Examples: integer alb syn a(l6)

array 32768 short integer memory syn 0

integer timer syn #50

The following example defines the standard integer identifiers:

integer MEM syn 0,

Bl s^n MEM(Rl),

B2 s^n MEM(R2),

B5 sjm MEM(R5),

Bk s£i MEM(R^),

B5 syn MEM(R5),

B6 SJ2X MEM(R6),

B7 sjm MEM(R7),

B8 s^n MEM(R8),

B9 s^n MEM(R9),

BIO s^n MEM(RIO),

Bll s^n MEM(Rll),

B12 s^n MEM(R12),

B13 sjrn MEM(R13),

Bl^ s^n MEM(RlU),

B15 syn MEM(R15)

Note: The synonym declaration can be used to associate several different

types with a single cell. Each type is connected with a distinct identifier.

Example: long real x = #UE00OOOO0000000OL

integer xlow syn x{h)

A conversion operation from a number of type integer contained in register

R0 to a number of type long real contained in register F01 can now be

denoted by

xlow :=: R0; F01 := x

and a conversion vice-versa by

FOl := F01 ++ #llE000000O0OO0O00L; x := F01; RO := xlow .

No initialization can be achieved by a synonym declaration.

(integer value synonym declaration) ::=

equate (identifier)(synonymous integer value)]

(integer value synonym declaration), (identifier)(synonymous integer value)

(synonymous integer value) ::= syn (integer value)|

syn (syn cell value) |syn (monadic operator)(integer value)|

(synonymous integer value)(arithmetic operator)(integer value)|

(synonymous integer value)(logical operator)(integer value)|

(synonymous integer value)(shift operator)(integer value)

(syn cell value) ::= (T cell designator) - (T cell designator)

20

0
0
II

f]

I:
0
I

I:

y

L
I

mmmmm

• — ■■ «I^Mlt"

0

0
11
II

u

Integer value synonym declarations serve to associate identifiers with

integer values. These integer values are computed at the time the declaration

is parsed and the identifiers thus associated can subsequently be used as

integer values (cf. 2.2.1). When the difference of two cell designators

is specified, the cell identifiers must both have the same base register

(cf. 2.2.11); the difference between their relative locations within the

segment is taken as the associated integer value. The cell designators

must not use index registers. The scope of validity of these integer

synonyms is the block in whose heading the declaration occurs (cf. 2.5.5).

Examples: equate a syn 200, b syn a+8, c syn h

equate d syn a/c and _h

array b byte x,y

equate e syn y-x, f syn e-c shll 2

Note: a = 200, b = 208, c = U, d = U8, e = 208, f = 816.

U

y
0

2.2.11 Segment Base Declarations

(segment base heading) ::= segment|global data (identifier)|

external data (identifier)|common data (identifier) |

common I dummy

(segment base declaration) ::=

(segment base heading) base (integer register)

(segment close declaration) ::= close base

A segment base declaration causes the compiler to use the specified

register as the base address for the cells subsequently declared in the block

in which the base declai'ation occurs. Such use is terminated either by

exit frou the block or by the subsequent appearance of a segment close

declaration. Upon entrance to this block, the appropriate base address

is assigned to the specified base register unless the symbol dummy appears

in the declaration (cf. 5*2).

If the symbol data is preceded by any of the symbols global, external

or common, the corresponding identifier is associated with the data segment

to enable linking of segments in different PL360 programs [8,9,12].

Appearance of the symbol sequence common base causes a blank identification

21

■MMfti

w^"»
I.JI.IU .1 -p|l.l|»,|l.l »WPPSBP» wmnmm ■ -

to be associated with the segment (cf. 6.6).

Note: Dummy base declarations permit the description of data areas which

are created during the execution of the PL560 program. The specified

base register must be some register other than RO [6], except in the case

of a dummy base declaration. When RO is specified in a dummy base

declaration, the subsequent identifiers are understood to have displacements

and no base register (or index register).

2.5 Control Facilities

2.3.1 If Statements

(relation) ::= = | -, = | < | <= | >= j >

(condition) ::= (iC register)(relation)(s7 primary) j

(integer register)(relation)(string)|

(byte cell)j-,(byte cell)| (relation)\overflow

A condition is said to be met or not met. A condition consisting of a

relation enclosed by a register and a primary is met, if and only if the

specified relation holds between the current values of the register and

the primary. When a relation is followed by a string, the string must

consist of not more than four characters. If it consists of fewer than

four characters, null characters are appended at the left of the string.

In this case, the condition is met if and only if the specified relation

holds between the current values of the register and the string (a logical

comparison is used). A condition specified as a byte cell (or a byte cell

preceded by -,) is met, if and only if the value of the cell is #FF (or

not *FF). A condition consisting of a relation or the symbol overflow

is met, if the condition code of the processor (cf. 2.1.1) is in a state

specified by Table 5.

22

0
B
I

C

I:

tamamm —-'■i mmm wmm

■qipgjft-yBV'f •a5-s>*jff-- ^ftft.-B.*-^ ^y^^,>fri^5y ^^ny»-:-

1
I
0
n
o

11

Li
II

i i

I:

I

y

H
i

symbol state 1

1 = 0

1 ~i = 1 or 2

1 < 1

I < = 0 or 1

i > = 0 or 2

> 2

j overflow 5

Table 5

(combined condition) ::= (condition)|

(combined condition) and (condition)

(alternative condition) ::= (condition)!

(alternative condition) or (condition)

(compound condition) ::= {combined condition)|

(alternative condition)

A compound condition is either of the form

cl and c2 and c5 .. • and en

which is said to be met, if and only if all constituent conditions are

met, or

cl or c2 or cj ... or en

which is said to be met, if and only if at least one of the constituent

conditions is met.

(if clause) ::= if (compound condition) then

(true part) ::= (simple statement) else

(if statement) ::= (if clause)(statement)]

(if clause)(true part)(statement)

The if statement specifies the conditional execution of statements:

1. (if clause)(statement)

The statement is executed, if and only if the compound condition of the

clause is met.

25

> -r ■ - -■ -- - ' ' '■ ■- - • ■■-■■-

.^III.I..IIIII»PHH, mi WBljiww—^^^ "" '"■' ii »jn^wiim <i<> >"" '■'"""" i'i'i ■«.■«"»*V'"IH ■" "i1^"

2. (if clause)(true part)(stateraent)

The simple statement of the true part is executed and the statement is

skipped, if and only if the compound condition of the if clause is met.

Otherwise the true part is skipped and the statement is executed.

Examples: if RÜ < 10 then Rl := 1

if F2 > _5.75 and F2 < 3.75 then FO := F? else FO := OR

if < then SET(flags(1)) else SEr(flags(2))

Note: If the condition consists of a relational operator without operands,

then the decision is made on the basis of the condition code as determined

by a previous instruction.

Example: CLC(l5,a,b); if = -uhen ...

2.3.2 Case Statements

(case clause) ::= case (integer register) of

(case sequence) ::= (case clause) begin|

(case sequence)(statement);

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of statements

according to the current value of the integer register (other than register

RO) specified in the case clause. The statement whose ordinal number

(starting with l) is equal to the register value is selected for execution,

and the other statements in the sequence are ignored. The value of that

register is thereby modified.

Example: case Rl of

begin comment interpretation of instruction code Rl;

F01 := F01 + F23;

F01 := F01 - F23;

F01 := F01 * F23;

F01 := F01 / F23;

F01 := neg F01;

F01 := abs F01;

end

2h

11
0
fl
0
0

0
I]

y

L
L
I

■ npxpMM»

2.5.3 While Statements

awhile clause) ::= vhile (corapoimd condition) do

(while statement) ::= (while clause)(statement)

The while statement denotes the repeated execution of a statement a:

long as the compound condition in the while clause is met.

Examples: while FO < prize(Rl) do Rl := Rl + U

while RO < 10 do

begin RO := RO + 1; F01 := F01 * F01; F23 := F25 * F01;

end

i!
Ü

li

Ü

Ü

Ü

2.5.^ For Statements

(increment) ::= (integer value)

(limit) ::= (integer primary) j (short integer primary)

(for clause) ::= for (integer register assignment) step (increment)

until (limit) do

(for statement) ::= (for clause)(statement)

The for statement specifies the repeated execution of a statement, while

the content of the integer register specified by the assignment in the for

clause takes on the values of an arithmetic progression. That register is

called the control register. The execution of a for statement occurs in

the following steps:

1. the register assignment in the for clause is executed;

2. if the increment is not negative (negative), then if the value

of the control register is not greater (not less) than the limit,,

the process continues with step 5; otherwise the execution of

the for statement is terminated;

5. the statement following the for clause is executed;

k. the increment is added to the control register, and the proC'-cs

resumes with step 2.

Examples: for Rl := 0 step 1 until n do STC(".", line (Rl))

for R2 := Rl step h until RO do

begin F25 := quant(R2) * price (R2);

FOl : = F01 + F23;

end

25

- - ■ -- • 1

^^"mtmwmtmmm ^^mm HP« nni

2.3.5 Blocks

(declaration) ::= <T cell declaration)!

(function declaration)| (procedure declaration)!

(T cell synonym declaration)! (ft" register synonym declaration)!

(integer value synonym declaration)!

(segment base declaration)!(segment close declaration)

(simple statement) ::= (^"register assignment)! (T cell assignment)!

(function statement)| (procedure statement)| (case statement)! (block)!

(goto statement)! null

(statement) ::= (simple statement)! (if statement)!

(while statement)!(for statement)

(label definition) ::= (identifier) :

(block head) : := begin! (block head)(declaration);

(block body) ::= (block head)! (block t>ody)(stateraent); J

(block body)(label definition)

(block) ::= (block body) end

(program) ::= (statement) . !

global (simple procedure heading);(statement) • !

global (simple procedure heading) base (integer register);(stateiiieut)

A block has the form

begin D; D; ...; D; S; S; ...; S; end

where the D's stand for declarations and the S's for statements

optionally preceded by label definitions. The two main purposes of a

block are:

1. To embrace a sequence of statements into a structural unit whic'.

as a whole is classified as a simple suatement. The constituent

statements are executed in sequence from left to right.

2. To introduce new quantities and associate identifiers with than.

These identifiers may be used to refer to these quantities in an:

of the declarations and statements within the block, but are not

known outside the block.

Label definitions serve to label points in a block. The identifier

of the label definition is said to designate the point in the block where

the label definition occurs. Go to statements may refer to such points.

26

0
0
0
(1
0
11
0
0
0

L

mtiäm mmm^tmmm

^^^^mmmmmm^mmmmmm^mmmmmmm\ i i
--MT.«.«.-.-«,. ^-.^»-«^jr^ra-fMrfficwiar -^sssawwesuw«^..«*

I
1
0
D
11
n
i I
. i

-

ii

[]

u
u
II
i

The identifier can be chosen freely, with the restriction that no two

points in the same block may be designated by the same identifier.

The symbol null denotes a simple statemsnt which implies no action

at all«

Example of a block:

begin Integer bucket;

if flag then

begin bucket := RO; RO := Rl; Rl := R2;

R2 := bucket;

end else

begin bucket := R2; R2 := Rl; Rl := RO;

RO := bucket;

end;

RESET (flag);

end

2.5.6 Go To Statements

(] (go to statement) ::= goto (identifier)

The interpretation of a goto statement proceeds in the following

steps:

1. Consider the innermost block containing the goto statement.

2. If the identifier designates a program point within the considered

block, then program execution resumes at that point. Otherwise,

execution of the block is regarded as terminated and the innermoct

block surrounding it is considered. If this block is in the same

program segment as the previous blocks, then step 2 is repeated;

otherwise, the identifier is undefined (cf. 5.1).

2.5.7 Procedure Declarations

(simple procedure heading) :t= • |

procedure (identifier)((integer register)) '

1 (separate procedure heading) sj» i

segnent (simple procedure heading)|

global (simple procedure heading)| , ,

external (simple procedure heading)

27

»^■iH,i.i"^jj."^.r, T»—irm^--^-.-

(procedure heading) ::= (simple procedure heading)]

(separate procedure heading)]

(separate procedure heading) base (integer register)

(procedure declaration) ::= (procedure heading);(statement)

A procedure declaration serves to associate an identifier, which

thereby becones a procedure identifier, with a statement (cf. 2.3«5) which

is called a procedure body. This identifier can then be used as an

abbreviation for the procedure body anywhere within the scope of the

declaration. When the procedure is invoked, the register specified in

parentheses in the procedure heading is assigned the return address of

the invoking procedure statement. This register must not be RO .

If the synhol procedure is preceded by the symbol segment, global, or

external, the procedure body is compiled as a separate program segment.

If the symbol is global or external, the corresponding identifier is

associated with the procedure segnent to enable linking of segments in

possibly different PL560 programs [8,9,12]. These symbols have no other

influence on the meaning of the program with the exception of restricting

the scope of goto statements (cf. 2.5.6, 5.1 and 6.6). If a base register

is specified in the procedure heading, the procedure body is compiled

using the specified register for the program segment base register

(cf. 5.1); otherwise the current program base register is used (usually

this is R15, however cf. 6.5). This register must not be RO. When

the procedure is invoked, the specified (or assumed) base register is

assigned thj entry point address.

Examples: procedure nextchar (R5);

begin if R5 < 71 then R5 := R5 + 1 else

begin RO := @ card; read; R5 := 0 ;

end;

IC(R0, card(R5));

end

28

(i

0
li

n

E

t

— MM ■MMMBtdM ■MMMMMMI

11
I]

[i

II

li
D
I
0
u

L

y
y

y
ii

procedure slowsort (RU);

for Rl := 0 step h until n do

begin RO := a(Rl);

for R2 := Rl + U step h until n do

if RO < a(R2) then begin RO := a(R2); R5 := R2; end;

R2 := a(Rl); a(Rl) := RO; a(R5) := R2;

end

external procedure searchdlsk (Rl1*) base R12; null;

Note: The code corresponding to a procedure body is terminated by a

branch-on-register instruction specifying the register designated in the

procedure heading. A procedure statanent places a return address in this

register when invoking the procedure. In order to return properly, the

programmer must either not change the contents of that register, or

explicitly save and restore its contents during the execution of the

procedure.

2.3.8 Procedure Statements

(procedure statement) ::= (procedure identifier)|

(procedure identifier)((integer register))

The procedure statement invokes the execution of the procedure body

designated by the procedure identifier. A return address is assigned to

the register specified in the heading of the designated procedure

declaration. If an integer register is specified in the procedure

statement, on return from the procedure the contents of R15 is transferred

to the specified integer register and the condition code is set by the

transfer. This facilitates the convention of passing return codes in

register R15.

29

fr

I
1

n

n

ii

j

LJ

LJ

('

LJ

ii

Li

I n

Examples

procedure Magicsquare (R6);

comment This procedure establishes a magic square of order n, if n is

odd and 1 < n < 16. X is the matrix in linearized form. Registers

RO ... R6 are used, and register RO initially contains the

parameter n. Algorithm 118 (Comm. ACM, Aug. 1962);

begin short integer nsqr;

integer register n s^n RO, i s^n Rl, J s^n R2, x s^nn R3, ij syn Rk,

k sgn R5;

nsqr := n; Rl := n * nsqr; nsqr := Rl;

i := n + 1 shrl 1; J := n;

for k := 1 step 1 until nsqr do

begin x := i shll 6; ij := j shll 2 + x; x := X(ij);

LJ M x -r 0 then
begin i := i - 1; J := J - 2;

if i < 1 then i := i + n;

if j < 1 then j := j + n;

x := i shll 6; ij := j shll 2 + x;

end;

[i X(ij) := k;

Li i:=i+l;ifi>n then i := i - n;

j := j + 1; if j > n then j := j - n;

Ll end;

end

30

- ■ - --' 1 II 11-■- ■ -- ■ —-■■' - •"■-■ 1 1 iiiiMHi in iiiiiiiii-i^iihiiiiir— ^,..^**^~***k**t*ätm*»maiM

Wßmmm mmrmmmmmi i n»i mmmmmmmmmmmm •> ^m w^^mamt

procedure Inreal(R^);

comment This procedure reads characters forming a real number according to

the PL560 syntax. A procedure lnextchar(R3)' is used to obtain the

next character in sequence in register RO. The answer appears in

the long real register F01. Registers RO ... R^ and all real

registers are used;

begin external procedure nextchar(R3); null;

integer register char s^n RO, accum s^n Rl, scale syn R2; ext sjn R5;

long real register answer syn F01;

byte sign, exposign;

long real converted = #UE0O0000OOOOO000L;

integer convert syn converted (U) ;

nextchar; RESEr(sign);

while char < "0" do

begin if char = "_" then SEr(sign) else RESET(sign); nextchar;

end;

comment Accumulate the integral part in accum;

accum := char and #F; nextchar;

while char >= "0" do

begin char := char and #F; accum := accum * 10S + char; nextchar;

end;

scale := 0;

convert := accum; answer := converted t 0L;

if char = "." then

begin comment Process fraction. Accumulate number in answer;

nextchar;

while char >= "0" do

begin char := char and #F; convert := char;

answer := answer * 10L + converted; scale := scale - 1;

nextchar;

end;

end;

if char = "," then

begin comment Read the scale factor and add it to scale;

nextchar; if char = "-" then

51

n

o

r
i.

»»Mai^aM MM*

D
n

I\

i ,

(j
Ü

1

il

I

begin SET (exposign); nextchar;

end else

if char = "+" then

begin RESET(exposign) ; nextchar;

11 end else RESET (expos Ign);

accum := char and #F; nextchar;

while char >= "0" do

,] end;
i 1 "~~

begin char := char and #F; accum := accum * 10S + char; nextchar;

end;

if exposign then scale := scale - accum else scale := scale + accum;

end;

if scale -p 0 then

begin comment Compute F^5 := 10 t scale;

if scale < 0 then

begin scale := abs scale; SET (exposign);

end else RESET (exposign);

F23 := 10L; Fkj := U,; F67 := F^5;

while scale -1 = 0 do

begin SRDL(scale, 1);

comment divide scale by 2, shift remainder into scale

extension, making ext < 0 if remainder is 1;

f . F25 := F23 * F67j F67 := F23;

IJ if ext < 0 then FU5 := Fl+5 * F25;

end;

{] if exposign then answer := answer / F1+5

else answer := answer * F^5;

end;

if sign then answer := neg answer;

end

procedure Outreal (Rh);

begin comment This procedure converts the (long) real number in register F01

into a string of ih characters which constitute one of its possible

decimal denotations. The character pattern is bsd.dddddd'sdd, where b

is a blank, s a sign, and d a digit. Registers RO, R2, R3, B.h, and

all real registers are used. Upon entry, register Rl must contain the

address of the output area. Its value remains unchanged;

52

1- ■ - ■■'- ---

^••mimmmmm m .iiiiiii .. ii uik,,j 1.11111,11 in in n i i mil irwmmt W M . U«H . in ^i • i i mm

integer register exp syn RO, scale syn R2, ext syn R5;

long real register x v,yn F01;

long real convert;

integer converted syn convert (h), expo syn convert (0);

byte sign;

array k logical pattern =

{fkö2J20kB, #20202020, #20207D21, #20200000);

if x = 0L then MW(15,B1," 0 ") else

begin if x < 0L then SET(sign) else RESEr(sign);

x := abs x; convert := x;

comment Obtain an estimated decimal scale factor from the exponent

part of the floating point representation;

exp := expo shrl 2k - 6k * 507S; if < then exp := exp + 255;

exp := exp shra 8-1; scale := abs exp;

comment compute Fkj := 10 t scale;

F23 := 10L; Fk^ := ILL; FbJ := Fk3;

vh-' le scale -F 0 do

begin SRDL(scale,l); F23 := F23 * F67; F67 := F25;

if ext < 0 then Fk5 := Fh^ * F25;

end;

comment normalize to 1 < x < 10;

if exp < 0 then

begin x := x * F1+5;

while x < 1L do

begin x := x *■ 10L; exp := exp - 1;

end;

end else

begin x := x / Fk^;

while x >= 10L do

begin x := x ^O.IL; exp := exp + 1;

end;

end;

x := x * l^L ++ #J+E00000000000005L;

convert := x; ext := converted;

comment ext is used here to hold the integer resulting from the

conversion;

;o

fl
{]

f;

F

v.

i

(i
IS
Ü

t
I
L

- -:-"-1 —
— M ■ : .^^^^^t^^JMMlM

i
1
II
0
0
0

u
i j

ü

il
I
I

3^ ext >= UOOOOOOOO then

be^in ext := ext / 10; exp := exp + 1;

comment adjustment needed when conversion results in

rounding up to 10.0. Note that R2 = 0;

end;

MVC(13, Bl, pattern); CVD(ext, convert); ED(9, Bl, convert(5));

if sign then MVlC1-", Bl(l));

CVD(exp, convert); ED(5, 31(10), convert(6));

if exp < 0 then MVI("-M, 81(11)) else MVI("+,,, Bl(ll));

end;

end

procedure Bi -irySearch (R8);

comment A binary search is performed for an identifier in a table via an

alphabetically ordered directory containing for each entry the

length (no. of characters) of the identifier, the address of the

actual identifier, and a code number. The global declarations

array N integer directory

array N short integer code syn directory (0)

array N short integer length syn directory (2)

array N integer address sjjn directory (h)

integer n

are assumed. n equals 8 times the number N of entries in the

table, \»hich appear as directory(8), directory(l6), ...,

directory(n). This assumption can easily be changed by changing

the value of size in the equate declaration. It is assumed that

code(O) = 0. Upon entry, Rl contains the length of the given

identifier. R2 contains its address. Upon exit, R3 contains the

code number, if a match is found in the table, 0 otherwise.

Registers R1-R8 are used;

begin integer register L sjrn Rl, low s^n R5, i sjjn RU, high s^n R5,

m s^n R7; equate size syn 8, mask syn neg size;

high := n; low := size; comment index step in directory is size;

while low <= high do

begin i := low + high shrl 1 and mask; R6 := address(i);

if L = length(i) then

51*

-- '' ■- ' !-" ■ I.MMftil'.

Wi^^^^m^!^*srii-"<""T'-'-'- Mijmwww-.iuiiiii.i. --..,.,.-—„., , „ .,_,,„.■„,,„, H,^,,,■PH«., wp.^!,,. .|^ .■«..,». . [.mi. l^ppigllpwBlljpppwpgwHfpgffWBBWT^g "" '. —fPH '' "■?^-11' BW^ wpwww ■»iw«p.piP-^->^y-Mwpn

55

0 begin EX(L, CK;(0, B2, B6)); if = then goto found;

if < then high := i - size else low ;= size + i;

end else

if L < length(i) then

begin EX(L, CIiC(0, B2, B6));

if <= then high := i - size else low := size + i;

end else

begin m := length(i); EX(m, CLC(0, B2, B6));

if < then high := i - size else low := size + i; r

end;

end; r-

i := 0; 4.

found: R3 := code(i);

end

I

[

ii
L

L

L

- - - .J__^_^_^^_^^^.

4. The Object Code

Three principal postulates were used as guidelines in the design of

the language:

1. Statement::; which express operations on data must correspond to

machine instructions in an obvious way. Their structure must be

such that they decompose into structural elements, each corresponding

directly to a single instruction.

2. No storage element of the computer should be hidden from the

programmer. In particular, the usage of registers should be

explicitly expressed by each program.

3. The control of sequencing should be expressible implicitly by

the structure of certain statements (e.g., through prefixing

them with clauses indicating their conditional or iterative

execution).

The following paragraphs serve to exhibit the machine code into which

the various constructs of the language are translated. The mnemonics of

the 3to Assembly Language [7] are used. to denote the individual instructions.

The notation fA} serves to denote the code sequence corresponding to the

construct (A) • It is assumed that R15 is the program base register

(c f. 5 .1, 6. 3) .

1. 0(register) : = (a primary)

The code consists of a single load instruction depending on the types

of register and primary (cf. Table 4, column 1).

2. (K register assigrunent)(operator)0 primary)

The code consists of a single instruction depending on the operator and

the types of register and primary. It is determined according to Table 4,
columns 2-7.

36

) . 0 cell) : = IJ(register)

The code consists of a single store instruction depending on the ~ypes

of cell and register as indicated by Table 4, column 8. '

4. if {condition-1) and ••• and (eondition-n-1) and .

{co.ndition-n) then {simple statement) else (statement)

(condition-1}

.BC c1,11

(condition-n-1}

BC c 1,11
n-

(condition-n}

.BC c ,11
n

(simple statement}

B 12

11 (statement l
12

c.
1.

is determined by the i-th condition, which itself either translates

into a compare instruction depending on the types of compar~d regisrer

primary (cf. Table 4, col. 9), or has no corresponding instruction, if

merely designates condition code states.

Example: if Rl < R2 then RO := R3 else RO := R4

CR 1, 2

BC 10, 11

1R 0, 3

B 12

Ll LR 0,4

12

37

i

and

it .

1 .

1
[1

f]

11 j

0
0
D

ca
U
O

I
0)

ON

CO II

I

VD

ITV

J" *

re» i

CVJ +

H II

11
ft43

u

•H

0) •

o o o Ü
S w o

Ü

e
pa
CO

M
En
CO K>

§ Ö CQ B g g

^ ^

on p , p o o p o

«

M ca S CO CO 8 §

Sg ^ ^' I S 3

a 9 S 9

•ö.

b

0}

V
o

0)

I

o

0)
(30
0)

I
I

•H rH
M H
0) 0)
M o

CD Co

u u

0)
+>
ca
•H

4) tt)

Pi
0)
Ü

0) < V

a) a> 3 1
t t' t t

^ | ^ ^

H

38

r
■ ■[I -WPWirui.iiMijii^^w^^^^^lg^f ■."■-,-JIJl^M... .1 m wpippppppj^HJllBipppw^^p iwwyigC!» ■ ■(■ imqpwaiBvvW"

6. case (integer register-m) of

begin (statement-l);

^statement-2);

Ln BQU *-ORIGIN

[staterrient-n}

B LX(15,0)

V

5. if ^eondition-l) or ... or ^condition-n-l) or (condition-n) then

^simple statement) else (statement) IT

fcondition-l] •*

BC c^Ll r.

... t«

{condition-n-1}

BC c .,L1 !' n-1' *'
{condition-n}

BC cn,L2 Y
LI {simple statement}

B L3

L2 [statement]

L5

I.

1.

(statement-n);

end • •

AR ra,ra . .

IH m,SW(m) [..

B 0(m,15)

LI BJU ^-ORIGIN !

{statement-l}

B LX(15,0)

L2 B^U ^-ORIGIN

{statement-2}

B LX(15^0) [
r

II I ^M——M——

I
1

II

11
0
11

SW EQU *-2

DC Y(L1)

DC Y(L2)

DC Y(Ln)

LX BQU *-ORIGIN

ORIGIN is the address of the beginning of the program segment and

register 15 is assumed to contain this address (cf. 5.1).

f 1

?• while (condition) do (statement)

LI {condition}

BC c,L2

{statement}

B LI

L2

If the condition is compound, then code sequences similar to those

given under k and 5 are used.

11
LI

0

u
L

k

-

8. for (integer register assignment)

step (increment) -until (limit) do (statement)

{integer register assignment}

B L2

LI {statement}

A m,I]HC

L2 C ra,LIM

BC c,Ll

Rm is the register specified by the assignment, INC the location

where the increment is stored, and LIM the location where the limit is

stored. The conrpare instruction at L2 may be either a C , CH , or CR

instruction depending on the type of limit. Moreover, c depends on the

sign of the increment.

1
uo

WiPPPW^Qi '■ "^'^^"""^-f?^*1"" •■' ' ly^^^™^,'*WT^HWW«WWWWpwWPTllfWBpgBWBiag^|^BWti -i.i.niui' ■■- »iwi^.n wfjf,^ «.^nptn^wwHui i, in .UJ.JF.WI--L-j.'..Tr^.-*-'r.i)WJPi'i..»i-

10. (procedure identifier)

or L 13 f newbase

BALR m,15

L 15,oldbase

It is here assumed that P designates the procedure to be called,

and Rm is the return address register specified in its declaration. The

first version of code is obtained whenever the segment in which the procedure

is declared is also the one 1 which it is invoked. If the procedure call

is of the form

(procedure identifier)(Rn)

then the instruction sequences become

or

ML m,P

ETR n,15

BALR 15,0

L 15, oldbase

L 15, newbase

BALR m,15

LTR n,15

BALR 15,0

L 15, oldbase

11

9. procedure (identifier)((integer register)); (statement)

p {statement}

BR m

It is assumed that the integer register enclosed in parentheses

is Rm .

[
BAL m, P r

i,

II
r.
r.

1
1
L

[
I
L

.., —-^—._—^—^- mmm

mmmmmm

1
]

il
0
I i

i;

ii

I

l:*f*';r'-a-'^--'M-1:.

5« Addressing and Segnentat ion

The addressing mechanism of the 560 computers is such that

instructions can indicate addresses only relative to a base address

contained in a register. The programmer must insure that

1. every address in his program specifies a "base" register,

2. the specified register is loaded with the appropriate base

address whenever an instruction whose address refers to it is

11 executed,

5. the difference d between the desired absolute address and

the available base address satisfies

0 < d < 1*096

This scheme not only increases the amount of 'clerical» work in

programming, but also constitutes a rich source of pitfalls. PL360 is

designed to ease the tedious task of base address assignment, and to provide

checking facilities against errors.

The solution adopted here is that of program segnentat ion. The program

is subdivided into individual parts, called segments. Every quantity

defined within the program is known by the number of the segment in which

it occurs and by its displacement relative to the origin of that segment.

The problem then consists of subdividing the program and choosing base

registers in such a way that

a. the compiler knows which register is used as base for each

compiled address,

b. the compiler can assure that each base register contains the

desired base address during execution, and

c. the number of times base addresses are reloaded into registers

is reasonably small.

It was decided [1] that the programmer should express explicitly

which parts of his program were to constitute segnents. He has then the

possibility of organizing the program in a way which minimizes the number

of cross-references between sei^nents.

k2

^^«M^M^MMl

niiiiiii..[ii ii.i.iuiii ..ii, i ii."ip..ii..'i >i*<mi in...n ^ippVMPiaVMnPmiPVI I " -''<JI MUMP i ■ .in II » II.HI

5.1 Program Segmentation

compiled as a segment,

^

It should be noted that the programmer's knowledge about segment sizes f]

and occurrences of cross-references is quite different in the cases of

program and data. In the latter case he is exactly aware of the amount of

storage needed for the declared quantities, and he knows precisely in what

places of the program references to a specific data segment occur. In the

former case, his knowledge about the eventual size of a compiled program

section is only vague, and he is sonetimes unaware of the occurrence of

branch instructions implicit in certain constructs of the language. It

was therefore decided [1] to treat programs and data differently, and this

decision also conformed with the desirability of keeping program and data j

apart as separate entities.

0
Ii
0

1;
Since control lies by its very nature in exactly one segment at any |

instant, one fixed register is designated to hold the base address of the

program segment currently under execution. Register R15 is usually used ?

for this purpose, (however, cf. 2.3.7, 60). 1

Branching to another segment is accomplished with a procedure
1

statement which causes R15 to be reloaded with the base address of the i
destination segnent before branching to that segment.

The natural unit for a program segment is the procedure. The only

way to enter a procedure is via a procedure statement, and the only way

to leave it is at its end or by an explicit go to statement. An

explicit go to statement cannot be used for branching to another segment.

The fact that no implicitly generated instruction can ever lead control

outside of a procedure minimizes the number of cross-references in a natural

way. Only relatively large procedure bodies should constitute segments.

A facility is provided to designate such procedures explicitly; A procedure ^

to be compiled as a program segment must contain the symbol segment or

global in its heading. It is relatively easy for a programmer to guess j

which procedure exceeds the prescribed size, or otherwise to insert the

symbol segment after the compiler has provided an appropriate comment in J*

the first compilation attempt. Obviously, the outermost block is always

L

L

I
i.

5.2 Data Segmentation

In the case of data, the programmer is precisely aware of the amount

of allocated memory as well as of the instances where reference is made to

these quantities. A base declaration was therefore introduced which implies

the.t all quantities declared thereafter, but still within the same block

and preceding another base declaration, refer to the specified register as

their base. These quantities form a data seeent. At the place of the

base declaration, an instruction is compiled which loads the register with

the appropriate segment address. However, its previous con·~ents are neither

saved nor restored upon exit fran the block.

A PL.36o program which is a statement is considered to be e;nbedded in

a block containing the implicit declarations

global ~ SEGNOOO ~ R13;

array 18 integer savearea;

However, the identifier "savearea" is not considered predeclared. The

18-word "savearea" is merely reserved to conform with procednre calling

conventions (cf. 6.1.4). If the PL36o program is a global procedure,

there is no implicit base declaration.

Obviously, data segments deClared in parallel (i.e., not nested)

blocks, can saf'el.y refer to the same base register. Data segments declared

within the same block usuall.y refer to different base registers. Data

segments declared within nested blocks should normally refer to different

base registers. If they do not, it is the programmer's responsibility to

ensure that the register is appropriately loaded when a segment is

addressed.

There is no limit to the size of data s~l?}llents. All cell identifiers

must, however, refer to ce:ls whose addresses differ from the segment base

address by less than 4o96. If they de not, the compiler provides an

appropriate indication.

44

6. The PL300 Compiler

The PL300 compiler is itself written in PL360. The current version

of the compiler is neither re-entrant nor serially reusable. This in no

way inhibits the writing of PL300 programs with t.hese attributes.

6.1 The Language

The PL300 programming language is described in Section 2 of this

document. Details pertinent to the present implementation (e.g., symbol

representations, standard i dentifiers, and specific limitations) are

contain~ in subsequent paragraphs of this section.

6.1.1 Symbol Representation

Only capital letters are available. Basic symbols which consist of

underlined letter sequences in Section 2 are denoted by the same letter

sequences without further distinction. As a consequence, they cannot be

used as identifiers. Such letter sequences are called reserved words.

Embedded blanks are not allowed in reserved words, identifiers, and numbers.

Adjacent reserved words, identifiers, and numbers must be separated by at

least one blank. otherwise, blanks may be used freely. The basic symbols

are:

+ * I <) = < > ~

' ·­.-
@ +

DO IF OF OR

II

ABS AND END FOR NEG SYN XOR

BASE BYTE CASE DATA ELSE GOTO LONG NULL

REAL SHLA SHLL SHRA SHRL STEP THEN

ARRAY BEGIN CLOSE DUMMY SHORT UNTIL WHILE

COMMON EJ;tUATE GLOBAL

COMMENT INTEGER LOGICAL S~

EXTERNAL FUNCTION OVERFLOW REGISTER

CHARACTER PROCEDURE

6 .1.2 StanJard Identifiers

The following identifiers are predeclared in the language but may

be redeclared due to block stru.cture. Their predefined meaning is specified

in Section 2 or in f) ecti~·~ 6 .1.4.

MEM

Bl B2 B3 B4 B5 B6 B7 B8 B9 BlO Bll Bl2 Bl3 Bl4

RO Rl R2 R3 R4 R5 R6 R7 R8 R9 RlO Rll Rl2 Rl3

FO F2 F4 F6

FOl F23 F45 F67

BALR CI.C CLI CVB CVD ED EDMK EX IC

LA LH LM LTR MVC MVI MVN MVZ NC NI OC OI PACK

RESRI' SRI' SLDA SLDL SFM SRDA SBDL S~ STH ST?-'I SVC

TEST TM TR TRT TS UNl'K XC XI

Bl5

Rl4

CANCEL GRI' KLOSE OPEN PAGE PRINT RJNCH RJT READ WRITE

6.1.3 Restriction

The implementation i..-nposes the restriction that only the first 10

character~ of identifiers are recognized as significant.

6 .1.4 Standard Procedures

A set of standard procedures is defined for elementary unit record

input and ouput operations. The implicit procedure declarations are as

follows:

external procedure READ (Rl4) ; null;

external proceo.ure WRITE (RJ.4); null;

external procedure PAGE (Rl4); m1ll;

external procedure RJNCH (Rl4); null;

external procedure PRINT (Rl4); null;

41)

Rl5

I
ll
0

I 1

I)

I

L
L

11
11

Suitable externally compiled or assembled routines must be provided in the

link/loading process; the specifications of these routines are:

READ Read an 80 character record from the system input data set

and assign that record to the memory area designated by the

address in register RO. Set the condition code to £ if no

record could be returned due to an end of file condition;

otherwise, to 0.

WRITE Write a 153 character record to the system listing data set.

A 152 character record is taken from the memory area designated

by the address in register RO and prefixed by an appropriate

carriage control character. A control character indicating a

new page is used after 60 lines have been written on a page,

otherwise a control character indicating the next line is used.

The first line is written on a new page.

PAGE Cause the next output record transmitted by a WRITE to the system

listing data set to have a control character indicating a new

page.

RJMCH Write the 80 character record designated by the address in

register RO to the system punch data set.

PRIMT Write the 135 character record designated by the address in

register RO to the system listing data set. The calling

program provides a USASI control character as the first

character.

All of these procedures assume that register R13 contains the address

of an 18 word save area and all registers are restored before return. Each

j of the data sets is opened upon initial reference and is closed by the

operating system at the end of a job step.

A set of standard procedures is defined for elementary disk and tape

input and output operations using sequential files. The implicit procedure

declarations are as follows:

external procedure OPENCRI^) ; null;

external procedure GET(Rl^); null;

external procedure HJT(Rl^); null;

external procedure KLOSE(Rl^); null;

^7

Suitable externally compiled or assembled rou~ ines must be p~ovided ~ the

link/loading process; the specifications of these routines are:

OPEN At entry, register RO must be 0 if the file i~ to be an ,

output file or 1 if the file is to be an input file.

Register R2 must contain the address of an 8-byte area

containing a unique file name. (This is taken as the ddname

in an OS environment and as the symbolic file name i.p. ri. DOS

environment.) In an OS environment, register Rl must contain

the address of a 100-byte full word-aligned area which, 1

following the open, will contain the data cqntrol block.

In a DOS environment, register Rl must contain the address 'of

a separately assembled DTF table which describes ~he f~le.

The file is made ready for input/ output ope:ratiQns. ' All
' .

registers are restored.

GEl' At entry, register Rl must contain the address of a table

which describes the file. (In an OS environment this tab~e

is caLled the data control block and in a DOS environment it

is called the DTF table.) Upon return, register Rl conta~1~

the address of the next logical record in the file. (The ·
first call of G~ returns with the address of the first

logical record.) When an end-of-file is reached, t ,he

condition code is set to 2; normally it is set to 0. All

registers, except Rl, are restored.

RJT At entry, register Rl must contain the address of a table

which describes the file. Upon return, register Rl contains

the address of an area in which the next logical record to

be output is to be built. Al.l other registers are restored.

KLOSE At entry, register Rl must contain the address of a table

which describes the file. The corresponding file is closed

and no further input-output operations can be perfonned with

it unless it is opened agaL~. In an OS environment, the

contents of register RO denoted by (RO) is also an input

parameter to this subroutine: If (RO) = 0 , the DISP

option of the DD statement is used to determine fi.nal volume

positioning; if (RO) < 0 , the volume is positioned at the

end of the data set. If (RO) > 0 , the volume is positioned

at the beginning of the data set. All registers are restored.

48

On~ additional standard procequre is defin~d for ease in communicating

with t~e operating syst~. The fmplicit proce~ure ~eclaration ~s as follow~:

external proc!edure CANCEL(Rl4); null; . ; __ ,

A suitable externally compiled 6r assembied rautine 1nust be provided in ~ the
I l I I

link/loading process; the specification of this routine is':
I

CANCEL ~~e ,job~ including' aJ.t future job 'steps, is can~elled. ·

: I
All of ~ · these procedures assume that register Rl3 contains the address

of art 18 word save area. (cf. '5 .2).
I '

' '

6.2 Input Format
I

Compiler . inPut records consist of 8o characte~rs. .The first 72 '
'

characters of each record are processed as part of a PL36o program; characters

73 thr~ 8o a:ce listed .but not othe~ise process~d. Character 72 of ~~e
. . '

, record is conside~ed . to be· immediately followed by. character l of the next
I . :

recdrd. Strings and camnents should be arranged so that the charf!:cter
I) '

'$' ,does not appear L~ charactTr .position 1.
I '

6.3
' I

Instructions to the Compiler
I

The compiler .. accepts instructions inse;rted. anywhere in the sequence of
J

input 'records. These instructions affect subsequent record,_,. A canpiler
• ! l

instruction record is marked by the character '$' in column 1 and an

instruction' in columns 2-9·
. . I

$NOGO Compile, but mark the output n~:>n-executable ~
! ·, 'I

' $LIST , List 'source records (initial. option) ,

$NotiST Do not list source records.
' :

$PAGE Start a new page with th~ next listing record.
I

$TITLE ·start a new page with the next lis-ping record, a.r,td use the

contents of columns 10 , throu~ 62 as the title for that and

subsequent pages.

r "' '""■l!"t|11 ■Iill.mn mi ii mmmm I —WP yW IWWWWWPIWPI fmrmw** \m •^mW„Wm m^wmmm-m-.

0

1.

(i

0

$XYir# IT this directive precedes the first source record then

compiler generated segment najnes will commence with XYY rather

than SEG, otherwise the directive is ignored. X signifies

any alphabetic and Y any alphanumeric character: (cf. 6.6).

$03 Gubsequent PL560 programs which are statements are compiled

with entry and exit instruction sequences which conform with p

the program calling conventions of an OS environment. This '

is a default option when the compiler is used with the OS r!

Interface.

$D0S Subsequent PL360 programs which are statements are compiled

with entry and exit insti-uction sequences which conform with

the program calling conventions of a DOS environment. This is

a default option when the compiler is used with the DOS

interface.

$XREF All subsequent instances of identifiers are listed in an

alphabetical crost;-reference listing together with the line

numbers at which they are referenced in the source program.

The cross-reference listing follows the program listing. If

there is not enough free storage to allocate to the

cross-reference tables, the cross-reference listing is not

made and the $XREF instruction is ignored.

$N0XREF This causes the previous option to be turned off (initial

option).

$0 Print a summary line at the close of each segment (initial

option).

$1 Print a summary line and list of external symbol dictionary

entries at the close of each segment.

$2 List the address of each variable and procedure as it is

declared, as well as the information specified in $1.

$5 List the object te.ct in hexadecimal notation at the close of

each segment, as well uc the infurnation specified in $2. j|

i U

Ü

0

. . ■ mmmm —■ m^mt,mmmmmmmitltmmltatimilmmmmtjml^^

p*p wmmam^v*t«wm

I
I
1
I
I
1
If
il

c
ii
i
i
i
i

i
i

$BASE=xx New program segments following this instruction are compiled

with xx taken as the program segment base register'. Tide

includes main programs, global procedures, segment procedures,

and external procedures. Procedure calls to such segments

automatically set the specified base register to the entry

point address. The decimal number xx must be between 01

and 15 • Programs which are statements must not be

compiled with base registers 13 or ih. The initial option

is xx=15 . It is recommended that this compiler instruction

only be used for programs which make use of DVC instructions

'rhich do n^t preserve the contents of register RIJ.

6.^ Compiler Listing Output

If listing is specified, each source record is listed as it is read.

Source records in which errors are detected are always listed. Four sets

of numbers appear at the left of each line. The first set consists of the

current internal program segment number (in decimal) followed by the program

object code relative address (in hexadecimal); the second set, of the

current internal data segment number and data relative address. The fifth

number is the number of the source record (excluding compiler inrtructions).

The final number, the begin/end level count, shows the excess of begin

symbols over end symbols at the beginning of the line on which it appears;

it is only printed after lines which cause its value to change.

In addition, each page begins with a heading which includes the pagp

number, date, time, and an optional title (cf. 6.5).

6.5 Error Messages of the Compiler

Errors detected by the compiler are indicated by a message and a

vertical bar below the character which was last read. After 51 errors are

detected in a program, a message is provided, and further diagnostic messages

are counted but not listed. Following is a list of error diagnostics and

their meanings:

51

1 iia^j^anMaMM^MM^an 1,^,,,^^ MMMMMMMIi

^MIMVMMnpR
" I "I"" mm mm niiiiiMinmiiii

Error No. Message

00 SYNTAX

01

02

05

Ok

05

VAR ASS TYPES

FOR PARAMETER

REG ASS TYPES

BIN OP TYPES

SHIFT OP

06 COMPARE TYPES

07 REG TYPE OR #

08 UNDEFINED ID

09 MULT LAB DEF

10 EXC INI VALUE

11 NOT INDEXABLE

12 DATA OVERFLOW

15 NO OF ARGS

1U ILLEGAL CHAR

Meaning

The source program violates the PL560 syntax.

Analysis continues with the next statement.

The types of operands in a variable assignment

are incompatible.

In a for clause, the register is not an integer

register, the step is not an integer or short

integer number, or the limit is not a register,

cell, or number of the integer types.

The types of operands in a register assignment

are incompatible.

The ty^es of operands of an arithmetic or logical

operator axe incompatible.

A real instead of an integer register or number

is specified in a shift operation.

The types of operands in a comparison are

incompatible.

Either the type or the number of the register

used is incorrect.

An undeclared identifier is encountered. The

identifier is treated as if it were 'Rl'. This

may generate other errors.

The same identifier is defined as a label more

than once in the same block.

The number of initializing values exceeds the

number of elements in the array.

An index register is not allowed for the cell

designator in this context.

The address of the declared variable in the

data segment exceeds ^95 •

An incorrect number of arguments is used for a

function.

An illegal character was encountered; it is

skipped.

!

(i
E

r.

ii
v..
L.

I:

0

11
I
I

i

mtmtmm lMi<aMI|MMMM

mm mmmn^. "

I

0

!)

li
0
0

y

15

16

17

18

19

20

MULTIPLE ID

PROGRAM OPLOW

INITIAL OFLCW

ADDRESS OFLCW

NUMBER OFLCW

MISSING •

21 STRING LENGTH

22 AND/OR MIX

23 FUNG DEF NO.

2U ILLEGAL PAEAM

25 NUMBER

26 sm mx

27 SEG NO OFLOW

28 ILLEGAL CLOSE

The same identifier is declared more than once

in the same block. This occurrence of the

identifier is ignored.

The current program segment is too large. It

must be resegmented.

The area cf initializing data in the compiler

is full. This can usually be circumvented by-

suitable data segmentation or by re-ordering

initialized data within the segment.

The number used as index is such that the

resulting relative address is less than 0 or

greater than k)95.

The integer number is too large in magnitude.

An end-of-file is encountered before a '.'

terminating V.he program. The problem may be

a missing string quote.

The length of a string is either 0 or greater

than 256.

A compound condition must not contain both

ANDs and ORs.

The format number in a function declaration

is illegal.

A parameter is incompatible with the specifi-

cations of the function.

A number has been used that has an illegal

type or value.

Synonym declarations cannot mix cell and register

declarations, or T cell designators have

different base registers.

The maximum allowed segment number has been

exceeded. The limit is generally set at 75.

A segment close declaration is encountered when

no data segment is open in the corresponding

block head.

55

"""""■""" ' """ ' ' "HL 11« »Uli« II I""» '■»'■■W I IIJ.ll|)m|ll||l|||pi»HI|| >|i|in|M|)HiiB.».......,J.|^-|^

5^

ß
'J9 NO DATA GEG A variable is declared with no open data ji

segment. A dummy data segment is opened.

50 ILLEGAL INIT Initialization is specified in a common data j

segment or replicates an absolute address.

At the end of each program segment, all occurrences of undefined labels 11

are listed with an indication of where they occurred.

6.6 Compiler Object Progran Output j|

The PL^öO compiler is designed to be used in conjunction with

link/loader programs which resolve symbolic cross-references between the It

segments of one or more programs. Examples of programs capable cf such

resolution are the NTTS loader [9], the IBM OS linkage editor or loader [8], 0

and the IBM DOS linkage editor [12]. The remainder of this section uses

the terminology of these programs.

The output of the PL560 compiler is a sequence of object modules.

Each object module contains a single control section corresponding to a

PL360 segment. It consists of 80 character records in the standard format

of external symbol dictionary (ESD), text (TXT), relocation dictionary (RID)

and an end (END) (cf. [10] Appendix B).

Every PL560 segment (except a dummy data segment) is associated with

an object module in the following fashion:

n

U
1. If the symbol segment appears in the segment declaration, an

object module is produced for this segment; the control section Jj

name is generated by the compiler as described below.

2. If the symbol global appears in the segment declaration, an J j

object module is produced for this segment; the control section *-»

name is the first 8 bytes of the identifier appearing in the j-i

declaration. Ü

3. If the symbol external occurs in the segment declaration, no

object module :*.s produced; instead the first 8 bytes of the ij

identifier in the declaration is assumed to be the name of a

control section independently generated and is used to indicate j|

this in the object module created for the segment containing the

external declaration. li
11

.—^—_. - ^m—^ _^^m^m^amtttä

4. If the symbol conunon appear s in the segment declar at ion t~en

an ob,ject module is created in the form of a labelled or blank

common control section ac ·ording to whether t he common

declaration contains an i dentifier or not.

In all cases R control section has a single entry :point; the entry

point name and the control section name are identical. In the case of &.

PL36o program which is a statement, a transfer address to the entry :point

is provided in the END card of the object module for the implicit segment

cort"esponding to this statement. This transfer address is used by J. loader

to determine where to ::,egin execution.

The task of the linkage editor/loader includes matching global and

external declarations, ins~rting absolute address constants and completing

tables of segment base addr P.sses, contained within each control section f or

a program segment, in accordance with the extP.rnal symbol dictionary and

relocation dictionary generated by th compiler for that control section.

For PL300 programs which are statements, co trol section names

generated by the: compiler are of the form SEGNnnn where rum is the decimal

internal segment number. If the PL36o program is a global procedure, the

first tl~ee characters of the :procedure identifier (extend~d on the r ight

by NN if necessary) are used in place of the characters 'SEG'. These

naming conventions may be overruled by use o€ the compiler direct:i.ve

$XYY~ (cf. 6.3).
Each END card of the object module output of the compiler has the name

"PL36o" followed ::,y the date and time of campilation.

6.7 Performance

In an OS environment on a 36o/67 witt spooled input and output files,

the compiler will recanpile itself in about 25 seconds. The compiler is

approximately 2700 card images. Thus, when the OS scheduler time is

subtracted f'ran the execution time given above, it is seen that the

compiler runs at a speed in excess of 100 cards per second (for dense code).

In a DOS environment on a 36o/30, the compiler i s limited only by t he

speed of the card reader. The campiler has successfully recompiled itself

on a 64K 36o/30 s.t a r :s.te of 1200 cards per mi nute (the speed of the card

55

i tirmmmmmmm T ^r ■ ■ ■ P ^^^ 11 "« ■'" i^ijiiM|m<iwwiwiiji «iiiipiwii in«" up

reader). This is impressive when compared to ^he time required for the

DOG Assembler to assemble the interface module which consists of under

250 cards. When the macro instructions are expanded, the DOS Interface

has 972 card images and the Assembler takes 15 minutes for the assembly.

l!

I]

0
n

E
0

__

56

0
0

■ - - - — IM^MM mmmm

w H
f lWW(aMm>iWMI)IW'WWIM«IIW|iill»WwwiiWi'%>i»fwBpiiMihWM■wmBWWtfWtf**W ■■"n,*r*».Pi' "Wl'»«MM«'WMW^rvm

i!
e 7. Linkage Conventions

Although EL560 was designed for writing logically self-contained

programs, it is possible to communicate with separately compiled progreuns

if appropriate linkage and coding conventions are observed. These

conventions are summarized below.

11
0
0
0

Li

y
u
y
ii

7.1 Calling External Routines from PL360

Addresses which correspond to external symbolic names and which are

to be supplied by linkage editing can be specified by the external or

common declarations of EL360. Entry to the block containing a data segment

declaration causes the specified base register to be loaded with the

corresponding address. External names appearing in procedure declarations

are assumed to designate entry points to subroutines. In such declarations,

the procedure body is normally the statement null. The call of the external

procedure P2 from the procedure PI is equivalent to the following 560

Assembler coding:

USING PI, 15
• • •
L £,=V(P2)

DROP 15

BAIR n,£

USING *,n

L 15,-A(P1)

USING PI, 15

DRO? n

This linkage Implies the following restrictions upon the called routine:

1. At entry, the base register specified (or assumed) in the

external procedure declaration (i) contains the address

of the entry point, unless jf = n .

2. At entry, the register specified in the external procedure

declaration (n) contains the return address.

3. Before return, the return address must be restored to that

designated register.

57

,

-' ■■-.■■---..-■■. ..,■.,,■..■.-...., 1 , iiifigmg J

ii ni^A^Jiiipini.iw.iNiiwmiiil'iiJijiifrw.^T' W"W ynnww

Any additional, non-conflicting conventions may be established by the

programmer.

If the called procedure (P2) uses R15 to return information to the

calling routine (Pi), the procedure statement in PI is usually of the form

P2(Rr.i) , indicating that the return linkage must move the contents of R15

to Bm , thus setting the condition code before re-establishing the base

address of PI in R15. The equivalent 560 Assembler coding for this type of

call differs from that already given only in the last four lines which

become

LTR m,l?

BALR 15,0

USING *,15

L 15,=A(P1)

USING PI, 15

OS type linkages are facilitated by the fact that if the calling PL560

program is a statement, the first 18 words of the implicit data segment

(base register R13) are available for use as a save area (cf. 5*2), and by

the 0® operator which facilitates the construction of OS-type parameter

lists at compile time.

ii

f\

7.2 Requesting Supervisor Services

SVC Instructions are available in PL560 programs through the function

statement. It should be noted, however, that in many operating systems

the contents of R15 are destroyed by execution of sane SVC instructions.

In such cases, it is essential that saving and immediately restoring R15

be explicitly programmed. This tedious Job of preserving the contents of

the program base register can be avoided by using the $BASE compiler

instruction (cf. 6.5), or by explicitly specifying a base register in

the procedure heading (cf. 2.5.7)«

58

L
i

L

-'-'■■'"■•'•■' ---"" a '■"'- iaaaaiMttiM*—iB mmtm^tmmm

^mqi^mmmmwmmmmm

i
11
0

II

0
0
0
0

u

u
II
II

7.3 Calling PL360 Procedures fron External Routines

Symbolic names and corresponding addresses to be made known to

routines external to the EL560 program are specified by the global and

common declarations of PL360. Global names specified in procedure

declarations are associated with the corresponding procedure entry point.

The external Invocation of EL360 procedures must satisfy the following

restrictions:

1. At entry to a PL360 procedure, the procedure base register

(usually R15, but cf. 2.3-7, 6.3) must contain the procedure entry
address and the register specified in the prciedure declaration

must contain the return address.

2. At exit from a correct EL360 procedure, the register specified

in the procedure declaration will contain the return address.

In addition, the following points should be noted:

1. If the EL360 program was compiled from a ctatement and not a

global procedure declaration,

a. the symbolic name of the entry point will normaliy be

SEGN001, the symbolic name of the implicit data segment
(with base register R13) will normally be SEOfOOO (cf. 6.3);

b. the return register will be Blh;

c. at entry, R15 must contain the address of an 18 word save

area, if the $08 option is in effect (cf. 6.3);

d. at exit, all registers are restored from this save area.

2. Immediately prior to exit from a EL360 procedure, R15 may be

loaded with a return code.

3. Global and external names violate the rules of scope established

by the PL360 block structure (cf. 2,2.^). By pairing global and

external declarations, a name can be given arbitrary scope.

Recursive procedures and coroutines can be programmed using this

feature; however, this ability should be used carefully and

sparingly.

59

— 1 11 ■ ■- ■............; .,. .,„,„,.„^ ■■i-finlm "- uüliaammjlH :.......1;.J..-..u,^.^^...,^^l-M^,.^a»aaa

'77Tw«.'M.p^'pi'r'i*.i"rwLi,iiii»'in,;wip' ■ i.jipiiji'oc^.iininiijinpi'i.'^w,

Consider the following example.

global procedure PI (Rl);

begin global data Dl base RIO;

integer A;

global procedure P2 (R2);

begin RO := A;

end;

global procedure P5 (R2);

begin external data Dl base RIO;

integer A;

RO := A;

end;

RO := A+l;

end.

The procedure P2 can be entered

with the base register for data

segmen+ Dl incorrectly loaded,

since it is possible to bypass

the entry code of the block

containing the base declsiration.

In procedure PJ, however, the

external declaration causes registo:'

loading, but all declarations luuüt

be repeated. In general, procedures

which are to be entered independently

should be declared as separate

programs when»"/er possible.

It should be noted that the registers specified in corresponding global

and external procedure declarations must be identical, while the registers

specified in corresponding global, external, and common data scgnent

declarations may be different.

(0

11

0

[j

i

ü
D
0

11

— ■■■ - - — ^Mk« MMHMMMMHii

mm

'''i1tiry"i»TiinWWWMiia*N'*ii WW'WWM wvw-, ••wamirMammu

1
I
0
n

11

D
0
Ü

LI
0
y
o
u
i

8. Operating System Interface and Configuration Requirements

The EL560 compiler contains no direct calls to an operating system,

nor does It contain any code dependent upon any specific operating system

environment. Instead, subroutines which Interface with a particular

operating system must be separately assembled and merged with the compiler

object modules by suitable linkage editing. Consequent^, any operating

system using 560 standard object modules (e.g. MTS, OS, BOS, TOS, DOS)

can accommodate the compiler. The PL560 compiler uses tbe following

external names for entry points to such routines:

READ SYSINIT

WRITE SYSTERM

HIHCH

The following Information is intended to facilitate the writing of
appropriate subroutines.

8.1 Register Conventions

The following conventions apply to all the above entry points:

1. R13 contains the address of a standard 18 word save area.
2. RlU contains the return address.
3. R15 contains the address of the entry point.

In addition, other registers and the condition code are used for input or
output parameters In those cases specified below. Before return to the
EL560 compiler, all registers (except R15 and any output parameter
registers) must be restored.

61

—"- - ■■-■■-.^ m niilljiM_1Mum1Llli ̂

I".. . . ■ ■»- Ml M ■

o

8.2 ijubroutlne Specifications

1. GYSINIT

Function: system Initialization, including

a. any required parameter list decoding,

b. opening required data sets,

c. obtaining free storage (at least 12,000 bytes),

d. supplying system or Job identification.

Input: none supplied by PL560.

(Registers R1-R5 will be unchanged from the point of

entry to the compiler.)

Output: Rl — address of a 16 byte character string to be

used as identification in compilation listing

headings.

RJ — address of first byte of free storage available

for use by the compiler.

RU — address of first byte past the end of the free

storage area supplied.

Rllj — set to #FF if the $OS option Is to be used,

set to 0 of the $DOS option is to be used

(cf. 6,3).

2. SYSTERM

Function: system termination, including

a. release of free storage,

b. closing required data sets.

Input: none

Output: R15 is set to 0 if the object module output from the

canpiler was discarded by the FJMCH routine. R15

should be set to some nonzero value if this is not the

case. The compiler uses this information in setting

a return code when it terminates.

ll
fl
fl

I:
i
i

I:
1:

62

L
11
11
0
11
11
11

1
H
0
!"l
11

11
Ü

11
II

3. READ

Function:

Input:

Output:

h, WIUTE

Function:

5.

Input:

Output:

HJNCH

Function:

Input:

Output:

traneniission of a card image record to the compiler
(source program input).

RO — address of 80 byte buffer into which the record

is to be moved.
Condition code set to

2 if no record was transmitted (input file exhausted),
0 otherwise.

transmission of a line Image record from the compiler

(listing output).

Records are 135 bytes in length; the first byte is a

USASI control character (" ", "0", or "1"), ajid the

last 12 bytes may be ignored without substantial

information loss.

RO — address of 135 byte output record.

none

transmission of a card image from the compiler

(object module output).

RO — address of 80 byte output record.

none

Ü

y
y

!1

8.5 Linkage to the Compiler

The PL560 compiler assumes the calling conventions outlined in 8.1.

That is, the compiler is always compiled with the $0S option (of. 6.5).

Parameters to be Interpreted by SYSINIT can be supplied in HI through R5.

Upon exit from the compiler,

1. R15 is set to 16 if any compilation errors were detected, to 8

if the return code from SYSTERM is 0, and to 2h if both conditions

exit; otherwise R15 is set to 0.
2. all other registers are restored.

63

1 ■■ 1 fca^—Ma^—M■—— ■MMMklMilk

I . BP ■■ .

»■i" "r —inn .i)iiiiii.mnii>ii m» n. i

8.H ConflL^ratlon Requirements

The compiler requires:

1. A Syetem/jtO prcx:essor with at least the scientific instruction

set.

2. At least 52,000 bytes of main storage (for the compiler and free

storage used for table space) plus whatever is required for the

Interface module and input-output buffer space.

5. A reader and either a punch or a device acccmmodatlng 80

character records with EBCDIC encoding.

h, A printer or device accommodatirg 133 character records with

EBCDIC encoding of the PL/l 60-character print set.

II
R
(i
B
e

l:

Gh

0
li
li

t
L

■ 11 ■ ^m*mmm*Lii **** mmttmmiM

1
n 9. Use as an OS Language Processor

This section describes the use of the PL560 compiler, with the

standard interface routines, in the environment of Operating System/560

(OS). An effort has been made to keep the Job Control Language statements

and processor options similar to those for the IBM OS Assembler (E, F).

0
D
Ö

11

9.1 Data Serb Requirements

The PL560 ccnipiler uses the data sets described below, identified

by the DDNAMEs required. All data sets are sequential with fixed blocked

format. Unless supplied by the system or by data set labels, DCB parameters

for physical block size (BLKSIZE) and number of buffers (BUFNO) must be

specified in the DD statement, except for SYSERIMT and SYSHJNCH. These

two data sets will use a default block size equal to the logical record

size if no value is specified elsewhere. Through selection of compilation

options (cf. 9.2), reference to any or all of the output data sets can be

prevented. In such cases, no corresponding DD statement is required.

1. SYSIN

This data set, consisting of compiler instructions (e.g. $NOLIST)

and one or more PL560 source programs, constitutes the input to the

compiler. The logical record length is 80 bytes. Concatenation of

data sets with unlike attributes is supported; however, space for

buffers and access method routines must never exceed that required

for the first of the concatenated data sets.

2. SYSPRINT

This data set contains the compiler output listing, including

all diagnostic messages. The logical record length is 155 bytes;

the first byte of each record is a control character.

u
Ü

65

.■J.^_-.-^.^. ■■■-A—-...—
- - ■

«a^^MMMMMlHIMMlftiMIIMBMIG

^^H^mmmmmm'^mmmtiffmfimmiiitmt m mmmmammm mmmmmmm mmm mm-- ■»■

':>. SYSRJNCH

This data set contains compiler output in the form of a sequence

of object modules. Some or all of the object modules corresponding

to programs in which errors were detected will be missingt The

logical record length is 80 bytes. The data set is closed with a

disposition of LEAVE.

k. SYSGO

This data set contains object module output identical to that

described for SYSHJNCH. It is closed with a disposition of REREAD

for further processing, such as linkage editing.

Options Data Set

LIST, NOLIST SYSPRINT

LOAD, NOLOAD SYSGO

DECK, NODECK SYSIUNCH

LOAD and DECK options are not mutually exclusive. Options may be specified

in any order; in the eise of conflict, the rightmost specification is used.

Default options are equivalent to

66

n
n
D
D
o
D
0 9.2 Processing Options

The production of listing and object module output by the compiler is jj

controlled explicitly by compiler instructions (cf. 6.5) or implicitly

(through error detection; oy tne input stream. Independent control of the

transfer of this output to OS data sets is provided by the following

compiler options, which can be specified in the FARM field of the Job

step EXEC statement. In each case, the unqualified parameter causes

transfer to the indicated data set; the prefix "NO" inhibits such transfer.

D

y
ü

PARM=, LIST, LOAD, NODECK» I]

11

li
0

■ irtliiiiliillliM—MMMMMMÜ^^Ü
MMMMHKMIMMMMMMaaMalHiaMMaflMHHHHtflMHHHinHMHM

1
11
0

fl
[1

II
i ;

D
Ö

0
Ü

Li
U
LI
U
U
y

9.3 Return Code

The return code supplied by the compiler is > 0 if any errors are

detected, or if the $N0GO directive (cf. 6.5) is detected, or if the NOLOAD

option is in effect, 0 otherwise (cf. 8.5).

9.U JCL Statements

The catalogued procedure used at Stanford is listed in this section

as an illustration of typical Job control language. At Stanford, the

compiler is available as a load module In the partitioned data set

T125«PIiLIB on SYS21. The input-output routines and other run-time object

modules which may be used by EL360 programs (cf. 15) are available in the

SYSLIB partitioned data set T125.PLSYSLIB on 81821. The linking-loader

automatically accesses this library to resolve external references. To

compile, link and execute a PL560 program using the catalogued procedure,

the following XL is sufficient:

//TESTPROG JOB ...
// EXEC PL560CG
//PL560.SYSIN DD *

[EL560 source programs]
/*
//GO.SYSIN DD *

[data]
/*

The text of the catalogued procedure follows:

//EL560 EXEC PGM=EL360
//STEPLIB DD DSN=T125.ELLIB,UNIT=251^,V0L=SER=SYS21,DISP=0LD
//SYSGO DD LSN=SYS1.UT2,U1JIT=251U,DISP=(0LD,PASS),
// DCB=(KEYLEN=0,BLKSIZE=l600)
//SYSPRIMT DD SYSCUT^A
//SySPUNCH DD SYS0UT=B
//GO EXEC PGM=IiOADER,PARM=,MAP,,COia)=(0,NE,PL560)
//SYSLOUT DD SYSCUT^A
//SYSLIN DD DSN^.PL560.SYSGO,DISP=(0LD,KEEP)
//SYSLIB DD DSN=T125.PriSYSLIB,DISP=OLD,UWIT=251^,VQL=SER=SYS21
//SYSPRINT DD SYSOUT=A
//SYSHJWCH DD SYS0UT=B
//SYSUDUMP DD SYS0UT=A

67

 ■ "■ '' imiirin ■■ im tmmttll^mäammtmmiimiltllimtmmailamiimam

. 5 Library

The standard procedures described in Sections 6.1.4 and 13 are included

in t he SYSLIB library . The input-output subroutines all use the queued

sequential access method (QSAM). The unit record input-output routines

assume f ixed blocked records. A default value equal to the logical record

size is used for the block size unless one is supplied by data set label

or by the DCB parameter BLKSIZE of the corresponding DD state.rnent • The

ddname correspondences for t h ese procedures are:

Proc edure ddname

READ SYSIN

WRITE SYSPRIN'r

PAGE SYSPRINT

PRINT SYSPRINT

RJNCH SYSRJNCH

The other input-output routines assume nothing about the DCB

information. This information must be supplied either by data set labels

or by the DCB parameters in the DD statements. Corresponding ddnames are

chosen by the programmer .

Abnormal termination C'·f a job (ABEND) may occur with these subroutines

in the following situations:

ABEND U0095

ABEl\'D U0096

ABEND U0097

ABEND U0098

ABEI\TD U0099

A unit record file could not be opened upon the first

occurrence of a READ, WRITE, PRINT or PUNCH.

A READ was attempted after reaching an end-of-file.

An attempted OPEN was tUlsuccessful.

A GET, PUT or KLOSE was attempted with an unopened DCB.

A GET was attempted after r~aching an end-of-file.

I f a SYSUDUMP DD statement i s included for the job step, a dump will

follow t he above ABENDs .

8

10. Use as a DOS Language Proces~or

This section describ~s the use of the PL36o compiler with the standar d

interface routines, in t !.1e envirorunent of the Disk Operating System/360

(DOS).

10.1 System Configuration Requirements

The Disk Operating System is usually used on small 36o machines. The

PL36o is an "in core" compiler and cannot be run on many of the smaller 360

computers due to the core memory requirements. The PL3tD compiler together

with the DOS interface and buffer space require approximately 55,000 bytes

of core memory. Since DOS requires about lOK of memory, this dictatee a

minimmn memory capacity of 64K for running PL36o.

Following is a list of the logical files used by the DOS-PL36o i~terfac e .

These files are usually assigned to the proper devices; however, default

assignments can easily be overridden with job control statements.

1. SYSIPI'

This file contains the primary input to the compiler; namely

compiler instructions (e.g. $NOLIST) and one or more PL36o source

programs.

2. SYS~

This file is used for compiler output in the form of a sequence

of object modules. Same or all of the object modules corresponding

to source programs in which errors were detected will be missing.

3. SYSLST

This file is used for the compiler output 15.sting, including all

diagnostic messages. The record length is 133 bytes and the first

byte of every record is a control character.

4. SYSLNK

This file receives object module output identical to that

described for SYS~ except i:.hat it is written in the special var~_able

record length format required by the DOS linkage editor. It is a~sumed

by the interface that this file resides on a 2314 disk; however, this

assumption can easily be changed (to a 2311, for example) in the source

code of the interface.

10 . 2 Processing Options

The production of listing and object module outF~t by the compiler is

controlled explicitly by compiler instructions (cf. 6.3) or implicitly

(through error detection) by the input stream. Independent control of the

transfer of this output to DOS files is provided by the following compiler

options, which can be altered through the first three bits of the UPSI

byte. In each case, the unqualified option cuases the transfer to tak~

place; the prefL'C "no" inhibits the transfer.

Options File Name

list, nolist SYSLST

load, no load SYSLNK

deck, nodeck SYS~H

The default options are (list,load,nodeck) • These de~ault options can

be changed with the j ob control statement

I I UPSI ijk

where i, j , k may be either 0 or l :

0 - take the default option,

l - r everse the defaul t option.

If no UPSI statement is included in the job control input stream, then

I I UPSI 000

is assumed. The load and deck options are not mutually exclusive.

10 . 3 JCL Statements

The following sample of job control statements which can be used for

invoking the PL36o compiler, link editing the output and executing the

resulting program assume that the compiler is available in the Core-Image

Library under the name PLDOS (digits cannot be used in the name, unfortunately),

the elementary unit record input-output S11broutines (READ, WRTIE, PRINT,

PAGE, RJNCH) and CANCEL are available in the Relocatable Library under the

70

I
I
I
a
D
D
n
i

i

L
0

D

B
0
1

name EL360IO, the tape and disk input-output subroutines (OPEN, GET,

HJT, KLOSE) are available in the Relocatable Library under the name

ELTAPEIO, and the run-time library (cf. 23) is available in the

Relocatable Library under the name RUNLIB.

// JOB [Jobname] [comments]

// UPSI ijk

if any, (cf. 10.2)

// OFCION TLINK ^l
^ CATALJ

If the linkage editor is to be used, this statement must be

included. The option LINK is for compile-and-go jobs, while

the CAIAL option also retains the core-image module and catalogues

it in the Core-Image Library.

// IHASE [program name],S+m

This statement is necessary only if option LINK or CATAL are in

affect. The integer m is set equal to 801 where I is the

I number of standard data set labels to be processed during the

EXEC step.

] // EXEC PLDOS

This statement invokes the PL560 compiler.

[source program]

/*
The following statements are necessary only if option LINK or

CATAL are in affect.

INCLUDE EL560IO

Includes the READ, WRITE, PAGE, HJnCH, HUNT and CANCEL subroutines.

[I INCLUDE ELTAPEIO

Includes the OPEN, GET, RJT and KLOSE subroutines.

D INCLUDE RUNLIB

Includes the run time library of subroutines (cf. 15).

ENTRY

71

tMSUUitMm mnamuatam*
'■■-■—■■ ■■'-■■■ — ■■■ '-—■ immMmmäM^emimmtämmiäliiiittim

i, . PI ..,. , --- ■-- -■ m mmmm mtmm — ■— ,,,

0
// EXEC LNKEDT U

This invokes the linkage editor.

[JCL for particular input-output requirements of the Job; for jj

example, label processing, etc.]

72

0
0

// EXEC

This executes the core-image module produced by the linkage

editor,

[card input for the program, if any]

/; , [1

B A typical job with lineprinter output and no input would have a deck setup

as follows:

// JOB1 TESTJOB l]
// OPTION LINK
// HLAÖE T,S
// EXEC FLDOS jj

(source program}

/*
INCEUDE PL560IO
ENTRY

// EXEC LNKEDT

// EXEC
/&

11
0
Ö

10.14- DTF Tables jl

This section describes the conventions which must be followed when

coding DTF macro instructions for the tape and disk input-output subroutines. |

(Refer to [Ik] for a complete description of the necessary macro instructions.)

Generally, the only macro instructions needed are: DTFMT (Define The (J

File for Magnetic Tape), MTMOD (Magnetic Tape input/output control section

MODule), and DTFSD and SDMODxx for sequential disk files. The DOS routines

for GET and RJT require the following conventions in declaring the DTF

table:

EOFADDR = ENDKDR,

I0REG = (2) .

11
0

y

———~—— 'i« ^^mmngg^imiggngngigijn

I
I
1
1
I

i!
a
D
o
D

D
D
0
Ü

0
i

Since the DTF macro Instruction is assembled by the IBM assembler as a

separate module, an

EXTRN ENDRDR

statement must be included in the assembly. ENDRDR is actually a subroutine

in the ELTAPEIO module.

The nsme of the MF table must be accessible to your PL560 program.

Thus, it must be specified as an EMTRY point. The easiest way to access it

in the ELJöO program is with an external procedure declaration. For example,

if the DTF table is called INFILE, one might code

external procedure IHFILE {Blh); null;

integer DTFADDR * 0® INFILE;

in the declarations of the EL560 main program. An external data declaration

may be used instead.

If variable-length records are to be written, the RBCSIZE parameter

must be used with its value being the maximum possible length of a record.

Also,

VARBLD = (5)

mast be specified. The RJT subroutine uses these parameters as follows:

If the remaining length in a buffer becomes less than RBCSIZE, a TRUNC macro

instruction is automatically issued to write the physical block and the

subsequent record is started at the beginning of the next buffer area

(I0AREA).

The example on the following page is for variable-length input from

magnetic tape with blocks of at most 1*000 bytes. The subroutine that actually

does the input is called a "logic module" and is generated by the MTMOD

macro instruction. When expanded, this assembly produces Jl^ card images.

Assembly time on a model 50 is about 5-10 min. The necessary job control

language has been included in the example. Notice that buffer areas must

be explicitly declared.

If you are not familiar with the hazards of writing these macro

instructions, be very careful and read every word of the instructions

contained in the Supervisor and 10 Macro Manual [lh].

75

- - - ..-jUkmumaiammmattaiiM ;..>■..,.--'■. .-,,, mmnsi

> > I I li I m^rmm^^mi VIII ■ 11 III I ^pv^^^OTf^m^« • iiiw.i wn» i -...,- . .

u // JOB I0ASM
// OPTION LOG, DECK, LIST, XREF If
// EXEC ASSEMBLY [1
HiFILE DTFWT BLKSIZE=lK)0^, X

DEVADDR=SYS010, X n
EOFADDK=ENDRDR, X ll
FILABL=STD, X ■
£RROPT=IGNQRE, X
HDRINFO=YES, X f]
I0AREA1=EACKIN, X I»
I0AREA2=PACKTW?- I0AREA2=EACKIN2, X
I0REG=(2), X
MODKAME=IJTVZZZY, X
RDONLY^YES, X
RECFORM=VARBLK

EXTRN ENDRDR

END

/&

READ=FORWARD, X

RECFORM=VARBLK X

7h

0
ENTRY DJFILE ü

PACKEN DS hOOkC
PACKENS DS kOOhC Cj
IJFVZZZY MTMOD ERROPr=YES, X

RDONLY=YES,

J

"I
J

0

Ü
1
(

Li

if

-^ , -■ ■ - ■ ii urtlMmnMiMA^MMM—hlMiMliMMM mum

wmmm^—^^—

~*"f.
»■ir^'^mi^irmM, iiummmi» ,-

I
| 10.5 Library

B The standard procedures described in Sections 6.1.U and 13 are
I available for the DOS operating system. The Input-output subroutines all

use the sequential access method (SAM).
I Abnormal termination of a Job may result from any of the following

conditions:

I 1. A READ or GET was attempted after reaching an end-of-file.
2. An attempted OFEN was unsuccessful.

■ 3* A GET, RJT or KLOSE was attempted with an unopened file.

Any of these conditions will result In a core dump.

1!
11

ß
0
u
0

u
Ü

u
il 75

untrn ■■ -■■■-■■--■■—"-mi,-—--■■-' ■--'■- J

0
0
0
I!

ii

[]

0
0
D
D
0
U
II

i:
ii

y

U. Use as an MIS Langviage Processor

This section describes the use of the PL560 compileri with the

standard Interface routines In the environment of the MTS Operating

System.

11.1 Data Set Requirements

The EL560 compiler uses the logical files SCARDS, SIKENT and SHJNCH

and the device HJNCH1.

1. SCARDS
This input file consists of compiler Instructions (e.g. $NOLIST)

and one or more Hi36o source programs.

2. smm
This file contains the compiler output listing. Including all

diagnostic messages.

5. SFJHCH
This file contains the object modules output by the compiler.

Seme or all of the object modules corresponding to programs in

which errors axe detected will be missing.

Jf. FJNCH1
Provides the object modules on cards (batch runs only).

11.2 Processing Options

The production of listing and object module output by the compiler

j , is controlled explicitly by compiler instructions (cf. 6.5) or implicitly

(through error detection) by the Input stream. Independent control of these

data transfers is provided by the following compiler options, which can be

specified In the PAR field of the $RUII command. In each case the
unqualified parameter causes the transfer to take place; the prefix 'NO1

inhibits the transfer.

76

 m MMana aal

Options File or Device

LIST,NOLIST SHUNT

L0AD,N0LOAD SFJNCH

DBCK,NODBCK HJNCH1

The DECK option Is available only In batch runs; LOAD and DECK are

not mutually exclusive. Options may be used in any order, In case of

conflict the rightmost specification it' used. The default options are

PAR=LIST, LOAD, NODBCK

11.3 MTS Library

The procedures READ, WRITE, PAGE and HJMCH described in Section 6.1.1+

are included in the file »PLJöOSLIB. An alternative version of the procedure

WRITE Is available in MTS, Its specifications correspond to those for the

procedure WRITE used by the compiler. This version of WRITE together with

READ, WRITE and PAGE are available In the file *PL360LIB.

n

o
D
11
C

11.4 MTS Commands

1. To compile in the batch (source on cards, listing to the

printer and the object program to a temporary file -T):

$RUN »PLJÖO SHJNCH= -T

2. To compile from a terminal, (source on a file MYSOURCE,

listing to a file MYLISTING and object program to a file

MYOBJBCT):

$RUN *PL560 SCARDS=MISOÜRCE SPRINT^OLISTING SHJNCH=*ffOBJECT

3. To execute the program created in Example 2> using the standard

library taking data from *S(XJRCE* and sending printed output to

a file RESULTS:

$RUN MyOBJBCT<-*PL360SLIB SPRINT ^RESULTS

When working from a terminal the Compiler directives $0 and $N0LIST can be

used. Only error messages (and their program context of one line) and one

line summaries of the coding for each segment are produced.

77

v.;

Ü

U

Ü

D
Ü

ll

Ü

i i mtmm ,, ,<|MaaiMM<t|(aMMilMtMtMM|a||ja(MM|gia|,l^M|IMyjtj|

I ■ W IM ■ I - I

'■"IT'I I -I ■ ii i mil "— - ' — ~ •

12. Use ag an Orvyl Langiiage Processor

This section contains a brief narrative description of how one uses

the interactive version of EL360 which runs under the Orvyl time-sharing

monitor [13]. This version is made possible through a special 0rvyl-PL360

interface module written in Assembly Language using the Orvyl macro

instructions [13].

12.1 Using the PL360 Compiler with Orvyl

This section assumes that the Orvyl system is being used at Stanford

where the Orvyl-EL360 compiler is saved In object module form in the

Wylbur data set T123.PL360 on SyS21. To use it, Just type:

USE &T123.EL360 ON SYS21 LOAD

You will then receive the message:

-WELCOME TO PL360

DO YOU WAMT M OBJECT DECK?

If your account has been activated for Orvyl files, then you can type

"YES" and EL360 will respond with:

FILE NAME?

You should then type the name of an Orvyl file in which PL360 will place

the object modules from subsequent compilations. This file can be either

new or old. The next thing PL360 asks is:

DO YOU WANT A LISTING?

If you respond "YES", then you will again be asked to supply a file name.

Thus, the listing is placed into an Orvyl file. The final question asked

by EL360 Is:

DO YOU WANT WYLBUR?

If your response is "NO", you will get the message:

BEGIN TYPING PL360 PROGRAM

-?

78

i»if-Miii-l in Ii iii'r.ii ..,..■ I 1 I ■'■■■■■..-.- - ■>■ ■■ ■:.■■,...^„. .. | - üyn—^^.J—^,»^^«1^;^».^.^^-^—^-^^(jiigji^giigyiJjgl

...n..».;-»»!"""""""'"!'"" TililiiiplilHIHIIIIHIIIHIIHII" lll'l im— " ' ■"■' "'' PIIP'r'Wll'"'WP1'l'

DO YOU WAHT YOUR PROGRAM?

Respond with a "YES". EL560 will then ask:

DO YOU WANT FURTHER ERROR MESSAGES TYPED?

You can respond to this question with either a "YES", "NO" or by hitting

the ATTN button. The ATTN button will cause PL360 to terminate and return

you to Wylbur. A "NO" will cause the compilation to continue with no

error messages typed at the terminal. A "YES" will cause the compilation

to continue as before. In either case, (except for ATTN) the listing

produced in the Orvyl file (if any) will be unaffected.

79

II
II
D

You can begin typing a PL360 program and each line will be compiled as

you go. Unfortunately, if you make a mistake, you must start over since

the old lines are not saved. For this reason, it is usually best to compile

from a Wylbur working dataset. To do this, say "YES" you want Wylbur and

EL360 will give the prompt

-?

You can now type Wylbur commands which will be passed to and executed by

Wylbur. You can continue to pass commands to Wylbur (for example, you

collect lines, edit lines, use files, copy files, etc.) until your

Wylbur working data set contains a EL360 program. You then type "COMPILE"

immediately after a -? prompt and EL360 begins compiling the program

contained in your Wylbur working data set.

Any error messages and the line on which they occur are printed at

the terminal as the compilation proceeds. Each time a segment is closed

a message is printed at the terminal.

When compiling from a Wylbur working data set, the compiler terminates

at the end of the data set and types

-LEAVING PL360

When typing the program in directly, you can leave EL360 by typing a

"/*" in the first two columns of a line. As you are leaving EL360, the

Orvyl core memory and your Wylbur working data set are cleared automatically.

If the program ycu are compiling has numerous errors and you wish to

suppress the typing of irror messages at the terminal, then simply hit the jj

ATTN button at the terminal. Orvyl will respond (as usual) with

Q

0

B
D
0
11

li
y

11
0
I
1
1
I
I
1
fl

0

y
y

After leaving EL360, you can get the object deck by typing

GET (file name) CARD

Ycu may get the listing by typing

GET (file name) HUNT CLEAR

The listing has UJ-byte records, the first byte of which is a carriage

control character. Thus, when the listing is printed offline, the

following Wylbur command should be used:

LIST OFF BIN XXX UNN (0)

The (0) part of the LIST command causes the first byte to be treated as

a carriage control character. The resulting lineprinter listing looks like

any other EL560 compilation listing. The Orvyl version of PL560 has

several advantages: Waiting for the batch queue is completely eliminated.

Syntax error messages are printed at the terminal, thus syntax errors can

usually be fixed immediately and another compilation can be made within

a minute or two. Paper is saved since listings with syntax errors are

seldom made. Finally, the Orvyl versions of the READ and WRITE routines

can be used to run and test the program immediately at the terminal.

In this way, Orvyl's debugging tools can be used and debugging takes far

less time.

Most short compilations can be done in about a second or two of Orvyl

compute time (less than 50^). This is a significant savings over batch

compilations. The EL560 compiler, which is about 2700 cards long, compiles

in 57 seconds of Orvyl compute time at a cost of about $6.20.

12.2 Input-Output Subroutines for Interactive PL360 Programs

Standard input-output subroutines using the same linkage conventions

as the READ and WRITE subroutines described in Section 6.U are available

for input-output operations directly at the terminal when running a PL560

program under the Orvyl monitor. A description of the parameter passing

conventions of these subroutines follows:

80

'^ ...—,.:.:... , ,
;' ■■■; - —■

[
«WmpPMWp«« mti ■^nimmiH"»^. LIWMHFWPIIH. ii I. Pl| ^■■■PWMIIT'III W^MW''W^"M*l!«JI|1'ffW,|WIIUII^flti>!l|y>fW!WW|Wff1' ilhwwi*W:W-''mr^ rvifp.w'V'j i^nwvyw^wwirviry»

. t* .',:*',r*.l,r-*-l,WW*»U* —W—Mi

READ The address of a 132 byte buffer should be provided in RO
prior to calling READ. Upon return, all registers are

preserved except R15 which contains the number of non-blank

characters typed by the user (counting Imbedded blanks).

All details such as error messages for illegal use of tabs

or waiting too long to respond are taken care of by the READ

subroutine. If a "/*" has been typed in column 1 then the

condition code is set to 2, otherwise it is set to 0.

WRITE This subroutine works exactly like the subroutine described in

Section 6.U. I.e., the address of a 152 byte buffer is passed

through register RO and all registers are preserved upon return«

The following discussion assumes that the Orvyl system is being used

at Stanford where the Orvyl READ and WRITE subroutines are stored In object

module form in the Wylbur file T123.EL56o.IO on SYS21 and the library

subroutines listed in Section 15 are stored in T123 .PL560 .RU1JLIB on SyS21.

To run a EL560 program in Orvyl, just follow this simple procedure:
First, compile the program. This may be achieved either in batch or with

the Orvyl version of EL560. Put the object module output of the EL560

compiler in a Wylbur working dataset and type:

COEf ALL TO END FROM &T123.EL560.I0 OS SYS21

LOAD TEXT

Your program will then begin execution.

81

IMMMMMPMi

I
I
I
I

Ö

0
E
I

-i:,-.^'.',......^....* ^ ^. - - -.«-^ ■1||^^iiMaaaa
milimmiimmmilimimjlltg i

i !.i .■■■pi^mH

1
1
o
0
0
0
i!
0

D
0
D
0
Ü

0

y

The Run-Time Library

This section describes a set of global procedures written in PL360

which perform commonly needed tasks. These subroutines are not predeclared

as external procedures in the EL56Q canpilerj thus they must be explicitly

declared in the calling program. In all cases, the procedure linkage is

done with register RlU, and R15 should contain the address of the entry-

point upon entry. At Stanford, the linkage editor automatically adds

the required subroutines if you are using the catalogued procedure

EL360CG (cf. 9.10.

13.1 Number Conversion Procedures

The two subroutines described below are used to convert the EBCDIC

representation of a number into an internal representation of that number,

or vice-versa. A slightly more conventional number representation is used

by these routines than that of the EL360 language (cf. 2.2.2). The

numbers must satisfy the following syntax:

(long complex number) ::= (long real number) + (imaginary number)!,

(complex number) ::= (real number) + (imaginary number)

(Imaginary number) ::= (real number)! | (integer number)!

(long real number) ::= (real number)L | (integer number)!

(real number) ::= (unsealed real) | (unsealed real)(scale factor) |

(integer number)(scale factor)] (scale factor)

(unsealed real) ::= (integer number), (integer number)|

. (integer number)|(integer number),

(scale factor) ::= '(integer number)| »(sign)(integer number)

(integer number) ::= (digit) [(integer number)(digit)

(sign) ::= + I -

Numbers are interpreted according to the conventional decimal notation.

A scale factor denotes an integral power of 10 which is multiplied by the

unsealed real or integer number preceding it. A number can have no

imbedded blanks and must be delimited by a blank.

The parameter passing conventions for the two conversion subroutines

are as follows:

89

Mill ' - ■"'

"^^^ JiiiHJUiiiijlWM.i.iiiji.Mir.wMiilliui.^^ Mp|p|^W|p|ppWWW)liaip)1WlWWBppH^^

VALTOBCD This procedure converts an internally stored value to an EBCDIC
representation. At entry,

Rl contains the address of an area to receive the EBCDIC
representation

R2 indicates the type:

1 = integer

2 = real

3 = long real

h = complex

5 = long complex

R3 contains the field length (> 1)

The value to be converted is in either RO, PO, P01, FO and F2,

or F01 and F25, depending upon the type.

A return code is left in R15:

0 => successful conversion

1 => field size too small

2 => invalid fieldsize

When the field size is too small to receive the value, the

field is filled with stars (*) .

All registers, except R15, are preserved.

The resulting value is left in either RO, FO, F01, FO and F2,

or F01 and F23, depending upon the type.

85

n
o
G

o

H
D

i
0
u

LI
BCDTOVAL This procedure converts an EBCDIC representation of a number jj

to an internal number. At entry,

Rl contains the address of the EBCDIC representation (possibly JJ

preceded by blanks)

R2 indicates type (see above) []

0

4 s

-—-—" .■■..■■■,..■.n-i^ ■ui-ii imi mi t^MM^a^n^a^M^^^^^^^jn^ggggumi^m^i

wmmmmmmtmn i

B
D
0

0
fl
II
i !

u
a
a
D

\1

A return code is left In R15:

0 »> successful scan

1 => invalid character in input string

2 => missing "I" on imaginary part

5 => nonblank delimiter

h «=> number scanned is not assignment compatible

(e.g., a decimal point is found when R2 = 1)

5 => integer too large

Upon exit, Rl contains the address of the delimiter.

Registers R2-R114- are restored.

15.2 Data Manipulation Procedures

The first procedure described in this section does an in-core indirect

sort using logical comparisons. The second procedure is a companion routine

which searches a sorted list for a specified element.

SHELSORT This procedure sorts character data. The Shell sort technique

is used. At entry, registers R0-R5 must be set as follows:

RO = the number of items to sort

Rl = the address of the index array

R2 = the number of the first byte of the key in each record on

which the sort is to be done. (R2 >= 1)

R3 = the number of bytes in the key on which the sort is to be

done.

The index array is a list of It-byte Integers containing the

addresses of the items to be sorted. The actual sort is done on

the elements of the index array and not the records themselves.

That is, only the order of the elements of the index array is

modified by the procedure. All registers are restored.

8k

 ■■■-■■ ■-■Illlll lirtl-i"«!! " ^..^^^^-~-^~l.~.i*~***^h>UM**-~*J~**M

mmnHm*' mpHHIPIvrn ■ ..■.iiM.lM»..w».mj;-wT;p.n.|i|JiH>iniiT^l".,VP,,JH"!"l'"'"l-l1' »'"'■"Uli. uiillll>Wll|limHWIT^IW'PPIIim»BHim,|l''Hi'«'!"1 I liiMl.fl-iliW'l^.1

BISEAKCH This procedure locates an element in a sorted list. At entry,

registers RO-RU must be set as follows:

RO = the number of entries In the sorted table

Rl = the address of the index array (see above)

R2 = the number of the first byte of the key field In the records

R5 = the number of bytes In each key field

B.h = the address of the key for which you are looking

At exit, Rl contains the address of an element In the Index

array that points to a record that contains the desired key«

If no match Is found, Rl = 0 .

All registers, except Rl, are preserved.

I
0
e

0
n

f

85

■.1..^.^..^ ------ - ■--■-j 11 nngjaMmmgmi i MiMrürr

'"• ! ! ! "

lU. Format of PL360 Programe

The following rules (except for some minor modifications) were proposed
by Wirth [15] during the development of the Algol W compiler (which is
written in ELJöO) as guidelines for producing uniformly readable PL360
programs. They have proved helpful and effective in both programming and
debugging. However, they must not be regarded as strict rules to be
followed under any circumstances, but rather as guidelines to be followed
when no stronger reasons dictate a choice.

a
0
D
n
\

\

1
1
1
1
1

l^.l Indentation

(a) Indent lines contained between begin and end by 3 spaces:

begin ...

begin ...

page; RO := ©line; ...

end; R6 :« R5; ...

end;

(b) Do not indent after if, for, while clauses, but reserve a

separate line for the clause, if it is followed by a lengthy statement:

for Rl :» 1 step 1 until 100 do

begin ...

However:

end;

if R0=1 then Rl := Rl+1;

86

.■—^w^w....'-.!.'..-.»^---..-. liny MaMBgmi^>BgaMujimaaggMguBi j

(c) In the case of g ~ ~, the two statements should be

shown to be of equal "importance", that is:

if RO=O then Rl := 1 else R2 := RJ.;

or

if RO=O then - -
begin •••

end else

begin ••.

end· _,

(d) A program sanetimes consists of a few very large blocks, each

being one or more pages long. In this case, indentation does nat make

sense because the reader cannot see that the page he is reading uses

indcr.": .. Cion at all. It is preferable to accanpany the begin and the end

of such a major block with a short camnent linking them together with a

cornmon name or number.

14.2 Spacing

(a) Spacing is a powerful tool in grouping things together which

should be read together, and to display the structure of a statement. If

spaces are used in the same amount everywhere, they are useless and may

as well be anitted with the benefit of saving paper. An example may

illustrate the idea:

RJ. := "rEM' I 4 + SIAB9 * c TD!P := RJ. ;

is equally as bad as

RJ.: =TmP/ 4+SIAB9*C ;TD!P: =Rl.;

Instead write

Rl :="rEM' /4 + SIAB9 *C; TD!P := Rl;

The follatoring rule may seem a bit absurd, but nevertheless it has

proven useful: Use no space between single letter identifiers and operators,

otherwise use one space.

(b) Always use one space before and af'ter the assignment operator.

1
—ww——

l'+ö Choice of Identifiers

(a) In general, use descriptive words for identifiers (in particular

labels). This serves as an implicit comment. However, if the identifier

occurs very often, it may be advantageous to use a short (possibly one-

letter) identifier.

(b) In this case, the declaration must be accompanied by a comment

explaining the nature of the quantity.

(c) Another exception from (5a) is the case where the identified

quantity or program location has only extremely local significance, such

as temporary storage cells or loop labels. In this case, the one-letter

identifier may be used to underscore the auxiliary and local role of the

quantity or label.

ik.h Comments

(a) Comments should always be given at key points such as along

with declarations, at block entry, in the procedure heading.

1
(b) If they occur elsewhere, they may represent "snapshots"; they

should explain relationships between variables which hold unconditionally

when control passes the point of the comment. Such snapshots are sometime:

extremely useful in explaining the functioning of a program.

i

a

(c) In PL560, comments will sometimes be necessaiy to explain the

role of a sequence of "obscure" function statements.

(d) In block- and procedure headings, it is useful to add a ourront

indicating which registers are used, or vice versa: which ones arc not.

Often it is useful to indicate what the registers are used for.

88

-.-.''^.Itjfe.i^rvj' ■-.' -

. ■.. ■.^-■..■- ,,,, ar.J-J.—^.^^..-^-.w.. ^-aa

14.5 Misc ·=llan.eous

(a) Declare quantities which have local significancE only in the

block where they belong. Avoid sharing of local variables, in particular

aYoid sharing "temporary storage cells" among several procedures.

(b) Avoid labels where you. can. This is not as easy in PL36o as

it is in Algol. Nevertheless, use if, for, and while statements instead

of goto statements where appropriate. When a label must 'be used, always

put it in the lef't margin where it can be easily located. When a goto

statement is used in a large program, it is s0metimes useful to acccmpany

~t with a ccmment telling the reader approximately where the label is

defined.

(c) Use the appropriate t~pe symbols when declaring variables.

For example, do not write

integer flag

when that variable is never used as a number, but only as a logical

quantity.

(d) Avoid bit manipulation where possible. For flags, use byte

variables and the functions SEI', RESE!r and TEsr.

(e) Minimize the use of functions.

(f) Avoid the use of subscripted synonyms, such as

integer .x ~ y(R2)

It is hard to realize that the statement

Rl :=X

uses R2 as an index registert Of course

integer x ~ y(2)

:i s o.k.

p •mmmmm^mwi

I

15. Actaaowledgnents

After the U.S. invasion of Cambodia in the Spring of 1970, a handful

of graduate students in the Computer Science Department at Stanford

decided to apply their programming skills to the data processing problems

of "working within the System". We decided to do a computer analysis of

precinct data to aid a candidate in the local Congressional race. One of
the early questions which had to be answered was what language to use?

For various reasons we "hose PL360. This decision necessitated the

design and coding of input-output subroutines for tape and disk units

(OPEN, GET, RJT and KLOSE). Many of our jobs were limited in speed by the

input-output devices; thus, the DOS interface was implemented to permit

"production" runs to be made on a small 360. Through the many nights

and weekends of programming and running Jobs, we became aware of shortcomings

in the compiler, the input-output subroutines and the PL560 language.

Many times we were in the unique position of developing and debugging the

compiler, the input-output subroutines and problem programs, simultaneously.

As a result, I believe that the EL560 system has evolved into a tool that

is not only elegant, but useful!

Thanks are due to Edwin Satterthwaite for many discussions and

explanations about EL360 and the OS interface.
Special thanks are due to Richard Guertin of the Spires/Ballots

project at Stanford who recently took an interest in PL360 and made

several Improvements. His careful scrutiny of the manuscript kept many

of my errors out of print.
The other students who programmed for the congressional race helped

in many ways, especially in the design of new features and debugging.

They are: Robert Russell, Henry Bauer and Richard Underwood.

Our enthusiasm about PL360 was not dampened by the fact that our

candidate lost.

u
90

■■^■.^.....-■■i-M—,-..■;./,.■... -' ' ' ■ -- '-■" ■■"'■ - • ■"'I ill Hill riMMH

fi

n

16. References

[1] N. Wlrth: FL560, "A Programming Language for the 560 Coraputers",

JA3M 12 (1968) 37.

[2] "08/360 H.360 Compiler", IBM Contributed Library (Type IV) Program
Nmber 36OD-O3.2.011.

[3] J. Eve: "PL360 Language Extensions", Internal Note, Computing

Laboratory. University of Newcastle upon Tyne.

[U] G. M. Amdahl, G. A. Blaaw, F. P. Brooks, Jr.: "Architecture

of the IBM System^öO", IBM J. of Res. and Dev. 8 (196^) 87.

[5] G. A. Blaauw et al. "The Structure of System/JöO", IBM Sys. J. 5
(196^) 119.

[6] "IBM Systen/360 Principles of pperatian", IBM Sys. Ref. Lib. A22-6821,

[7] "IBM System/360 OS Assembler Language", IBM Sys. Ref. Lib. Form

C28-6538.

[9] MPS Vol. I 290-0 et. seq., University of Michigan Computation Center,

Ann Arbor.

[10] "IBM System/360 OS Assembler F Programmers Guide", IBM Sys. Ref. Lib.

Form C26-3756.

[11] "ELJÖO Programming Manual", University Computing Laboratory,

University of Newcastle upon Tyne, Claremont Tower, Newcastle upon

Tyne, NE1 TRU, England, 1970.

[12] "IBM System/360 DOS System Control and System Service Programs",
IBM Sys. Ref. Lib. Form C2U5036.

[13] R. Fajman and J. Borgelt, "Orvyl User's Guide", Stanford University

Computation Center, 1971«
[1^] "IBM System/360 Disk Operating System Supervisor and Input/Output

Macros", IBM Sys. Ref. Lib. Fonn 02^-5037•
[15] N. Wirth: "Format of PL360 Programs", Algol W - Project Memo,

Stanford University, Sept. 9, 1966.

y

l!
li

91

■iM.ir giaftittM

